Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 92-101    DOI: 10.1016/j.jmst.2017.10.016
Orginal Article Current Issue | Archive | Adv Search |
Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (ARB) Cu-Nb nano-lamellar composites (NLC)
Judy Schneidera*(), Josef Cobbb(), John S. Carpenterc(), Nathan A. Marad()
a Department of Mechanical & Aerospace Engineering, University of Alabama in Huntsville, USA;
b Department of Mechanical Engineering, Mississippi State University, USA
c Materials Science and Technologies Division, Los Alamos National Laboratory, USA
d Center for Integrated Nanotechnologies, and the Institute for Materials Science, Los Alamos National Laboratory, USA
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      

Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. During a single pass of the friction stir welding (FSW) process, the nano-lamellar structure of the parent material (PM) was retained but was observed to fragment into equiaxed grains during the second pass. FSW has been modeled as a severe deformation process in which the material is subjected to an instantaneous high shear strain rate followed by extreme shear strains. The loss of the nano-lamellar layers was attributed to the increased strain and longer time at temperature resulting from the second pass of the FSW process. Kinematic modeling was used to predict the global average shear strain and shear strain rates experienced by the ARB material during the FSW process. The results of this study indicate that through careful selection of FSW parameters, the nano-lamellar structure and its associated higher strength can be maintained using FSW to join ARB NLC panels.

Key words:  Nano-lamellar materials      Accumulative roll bonded      Cu-Nb      FSW      Solid state joining     
Received:  13 March 2017     
Corresponding Authors:  Schneider Judy     E-mail:;;;

Cite this article: 

Judy Schneider, Josef Cobb, John S. Carpenter, Nathan A. Mara. Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (ARB) Cu-Nb nano-lamellar composites (NLC). J. Mater. Sci. Technol., 2018, 34(1): 92-101.

URL:     OR

Fig. 1.  (a) Optical microscopy image of an electron beam weld of the Cu-Nb NLC panels (b) Higher magnification of the boxed region in (a) shows the edge of the weld melt zone where a dendritic Nb structure has formed within a Cu matrix [12].
Fig. 2.  (a) FSW diagram showing the process parameters, workpiece material, tool, advancing and retreating sides. (b) A schematic of the transverse view of a FSW which contains the weld nugget, thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ), and parent material (PM).
Fig. 3.  Diagram showing the transverse view layout of the double pass weld.
Fig. 4.  Tensile dogbone dimensions with panel transverse direction (TD) and rolling direction (RD) labeled. The FSW was made along the rolling direction of the ARB panels. All dimensions are in mm.
Fig. 5.  Schematic of plan view of FSW zone in which material enters in slip lines around the FSW tool [after 17]. The material travels from right to left while the tool rotates in a counter clockwise direction.
UTS (MPa) Weld efficiency (%) Elongation to Failure (%)
Cu-Nb ARB PM [2] 687 NA 2.62
Single pass FSW 606 88.2 1.40
Double pass FSW
Specimen #1 404 58.8 1.53
Specimen #2 383 55.7 1.87
Table 1  Mechanical properties of PM, single pass FSW, and double pass FSW.
Fig. 6.  DIC εxx strain field maps showing large local strain on the AS for single (a) and double pass (b) FSWs. Corresponding scale-bar shows the strain with units of mm/mm.
Fig. 7.  SEM backscatter image of PM microstructure showing the nano-lamellar structure. The lighter layers are Nb and the darker layers are Cu.
Fig. 8.  (a) Location of SEM image in single pass FSW. (b) SEM backscatter image of the FSW nugget.
Fig. 9.  (a) Location of SEM image in single pass FSW region. (b) SEM backscatter image of RS of the FSW nugget before removal of root side lack of penetration (LOP) region for the tensile test specimens.
Fig. 10.  (a) Location of SEM image in single pass FSW region. (b) SEM backscatter image of the AS of the FSW nugget showing the most extreme changes in direction and layer refinement.
Fig. 11.  (a) Location of SEM image in FSW region for the double pass FSW. (b) SEM image of transverse section of the double pass FSW showing loss of visible layered structure, in the SEM, at the AS interface between the nugget and the TMAZ region.
Fig. 12.  (a) Location of SEM image in FSW region for the double pass. (b) FSW Hardness map across the double pass FSW at the AS nugget/TMAZ interface. Hardness values are shown in GPa.
Fig. 13.  SEM backscattered image of waviness, swirls and vortices in the FSW region of a double pass weld in the Cu-Nb nano-lamellar layers.
Fig. 14.  Profile of the FSW velocity that imparts a shear flow gradient parallel to the layers.
Material Thermal conductivity (W/m K) Specific Heat (J/g °C) RT Density (g/cc) Tmp (°C) RT UTS (MPa) 0.50 Tmp (°C) 0.95 Tmp (°C)
Cu 385 0.385 8.93 1083 210 1016
Nb 52.3 0.351 8.6 2468 300 1098
Table 2  Summary of properties and expected FSW temperatures for annealed Cu and Nb [13,37].
[1] N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, A. Misra, Appl. Phys.Lett. 92 (2008) (231901-1-3).
[2] I.J. Beyerlein, N.A. Mara, J.S. Carpenter, T. Nizolek, W.M. Mook, T.A. Wynn, R.J.McCabe, J.R. Mayeur, K. Kang, S. Zheng, J. Wang, T.M. Pollock, J. Mater. Res. 28(2013) 1799-1812.
[3] J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, N.A. Mara, Philos.Mag. 93(2013) 718-735.
[4] S. Zheng, J.S. Carpenter, R.J.McCabe, I.J. Beyerlein, N.A. Mara, Sci. Rep. 4(2014)1-6.
[5] A. Misra, M.J. Demkowicz, X. Zhang, R.G. Hoagland, JOM 9 (2007)62-65.
[6] W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S.Carpenter, I.J. Beyerlein, A. Misra, Adv. Mater. 25(2013) 6975-6979.
[7] J.S. Carpenter, S.C. Vogel, J.E.LeDonne, D.L. Hammon, I.J. Beyerlein, N.A. Mara,Acta Mater. 60(2012) 576-1586.
[8] C.A. Bronkhorst, J.R. Mayeur, I.J. Beyerlein, H.M. Mourad, B.L. Hansen, N.A.Mara, J.S. Carpenter, R.J. McCabe, S.D. Sintay, JOM 65 (2013) 431-442.
[9] A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53(2005) 4817-4824.
[10] H.M. Zbib, C.R. Overman, F. Akasheh, D. Bahr, Int. J. Plasticity 27 (2011)1618-1639.
[11] J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, I.J. Beyerlein,Metall. Mater. Trans. A 45 (2014) 2192-2208.
[12] J. Carpenter, Staff Scientist at LANL, unpublished data (2013).
[13] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
[14] H. Farrokhi, A. Heidarzadeh, T. Saeid, Sci. Technol. Weld. Join. 18(2013)697-702.
[15] A.C.Nunes Jr., Joining of Advanced and Specialty Materials (JASM) IncludingAffordable Joining of Titanium and Joining Technologies for MMCs, MaterialsScience and Technology (MS&T) 2006, Product Manufacturing, WileyPublishing Company Inc., Somerset, 2010.
[16] L.E. Murr, Y. Li, R.D. Flores, E.A. Trillo, J.C.McClure, Mater.Res. Innov. 2(1998)150-163.
[17] L.E. Murr, E.A. Trillo, R.D. Flores, B.M. Nowak, J.C.McClure, Fluid FlowPhenomena in Metals Processing, in: N. El-Kaddah, D.G.C. Robertson, S.T.Johansen, V.R. Voller (Eds.), The Minerals Metals & Materials Society (TMS),Warrendale, 1999, pp. 31-40.
[18] Y. Li, E.A. Trillo, L.E. Murr, J. Mater. Sci.Lett. 19(2000) 1047-1051.
[19] K. Colligan, Weld. J. 78(1999) 229-237.
[20] T.U. Seidel, A.P. Reynolds, Metall. Mater. Trans. A 32 (2001) 2879-2884.
[21] J. Schneider, R. Beshears, A.C.Nunes Jr., Mater. Sci. Eng.A 435/436(2006)297-304.
[22] W.C. Oliver, G.M. Pharr, J. Mater. Res. 19(2004) 3-20.
[23] J.A. Schneider, A.C. Nunes Jr., Metall. Trans. B 35 (2004) 777-783.
[24] W. Johnson, R. Sowerby, J. Haddow, Plane-Strain Slip-Line Fields: The Theoryand Bibliography, American Elsevier Publishing Company Inc., New York,1970.
[25] R. Hill, J. Mech. Phys. Solids 2 (1954) 110-116.
[26] J.A. Schneider, A.C. Nunes Jr., in: T. David, J.C. DebRoy, H.B. Lippold (Eds.), Proc.7th Int’l Conf. Trends Weld, ASM International, Materials Park, 2005, pp.253-256.
[27] B. London, M. Mahoney, W. Bingel, M. Calabrese, R.H. Bossi, D. Waldron,Material flow in friction stir welding monitored with Al-SiC and Al-Wcomposite markers, FSW&P II, in: K.W. Jata, M.W., Mahoney, R.S., Mishra, S.L.,Semiatin, T. Lienert (eds.), pub. TMS, p. 3-12, 2003.
[28] H. Ouyang, R. Kovacevic, JJMEPEG 11 (2002) 51-63.
[29] F.C. Liu, T.W. Nelson, Mater. Des. 110(2016) 354-364.
[30] P.B. Prangnell, J.S. Hayes, J.R. Bowen, P.J. Apps, P.S. Bate, Acta Mater. 52(2004)3193-3206.
[31] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner,W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238(1997) 219-274.
[32] K.V. Jata, S.L. Semiatin, Scr. Mater. 43(2000) 743-749.
[33] J. Cobb, S. Vachhani, R.M. Dickerson, P.O. Dickerson, W. Han, N.A. Mara, J.S.Carpenter, J. Schneider, Mater. Res. Lett. 1(2014) 1-6.
[34] T.K. Bhattacharya, H. Das, T.K. Pal, Trans. Nonferrous Met. Soc. China 25 (2015)2833-2846.
[35] (accessed December 2016).
[36] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche,J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Ann. Manuf.Technol. 57(2008) 716-735.
[37] S.B. Lee, J.E.LeDonne, S.C.V. Lim, I.J. Beyerlein, A.D. Rollett, Acta Mater. 60(2012) 1747-1761.
[38] V.M. Segal, Mater. Sci. Eng. A 338 (2002) 331-344.
[39] V.M. Segal, K.T. Hartwig, R.E. Goforth, Mater. Sci. Eng. A 224 (1997)107-115.
[40] E.H. Ekiz, T.G. Lach, R.S. Averback, N.A. Mara, I.J. Beyerlein, M. Pouryazdan, H.Hahn, P. Bellon, Acta Mater. 72(2014) 178-191.
[41] A.P. Zhilyaev, T.R.McNelley, T.G. Langdon, J. Mater. Sci. 42(2007)1517-1528.
[42] H.E. Ekiz, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2015.
[43] Y. Cao, M. Kawasaki, Y.B. Wang, X.N. Alhajeri, X.Z. Liao, W.L. Zheng, S.P. Ringer,Y.T. Zhu, T.G. Langdon, J. Mater. Sci. 45(2010) 4545-4553.
[44] L.F. Zeng, R. Gao, Q.F. Fan, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, T. Zhang, ActaMater. 110(2016) 341-351.
[45] Y. Li, F. Liu, X. Ma, M. Zhang, Shock Waves 26 (2016) 759-770.
[46] C. Ancey, J. Non-Newtonian Fluid Mech. 142(2007) 4-35.
[47] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, Prog. Mater. Sci. 60(2014)130-207.
[1] Mingrun Yu, Hongyun Zhao, Zhihua Jiang, Zili Zhang, Fei Xu, Li Zhou, Xiaoguo Song. Influence of welding parameters on interface evolution and mechanical properties of FSW Al/Ti lap joints[J]. 材料科学与技术, 2019, 35(8): 1543-1554.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.