Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 58-72    DOI: 10.1016/j.jmst.2017.10.018
Orginal Article Current Issue | Archive | Adv Search |
Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review
S.Mironov*, Y.S.Sato, H.Kokawa
Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579, Japan
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, the current understanding and development of friction-stir welding and processing of Ti-6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wear, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted.

Key words:  Ti-6Al-4V titanium alloy      Friction-stir welding      Friction-stir processing      Microstructure      Properties     
Received:  03 April 2017     
Corresponding Authors:  S.Mironov   

Cite this article: 

S.Mironov, Y.S.Sato, H.Kokawa. Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review. J. Mater. Sci. Technol., 2018, 34(1): 58-72.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.10.018     OR     https://www.jmst.org/EN/Y2018/V34/I1/58

Fig. 1.  Schematic illustration of friction-stir welding process (after R. Nandan et al. [4]).
Fig. 2.  Typical example of a welding tool (after L. Zhou et al. [17]).
Fig. 3.  Typical examples of (a) tool wear (after L. Zhou et al. [21]) and (b) tool debris in stir zone (after S. Yoon et al. [53]).
Fig. 4.  (a) Effect of processing variables on temperature profile (after B. Li et al. [12]), and (b) evolution of tool temperature with welding time (after A.L. Pilchak et al. [24]). Note: The labels in the upper right corner of (b) indicate tool rotational rate (i.e. 120, 150 and 200 rpm) and locations of the temperature measurements (i.e. pin or tool shoulder).
Fig. 5.  Examples of processing windows: (a) after J. Su et al. [42], (a) after P. Edwards et al. [44], (a) after P. Edwards et al. [47].
Fig. 6.  Typical welding defects: (a) kissing bond (or lack of penetration), and (b) root cavitations (after P.D. Edwards et al. [63]).
Fig. 7.  Schematic illustration of stationary-shoulder FSW (Courtesy of TWI Ltd).
Fig. 8.  Examples of residual stress distributions: (a) after S. Pasta et al. [38], (a) after A. Steuwer et al. [45]. Note: Longitudinal stresses are shown in (a).
Fig. 9.  Typical low-magnification overview of stir zones produced in welds of different thickness (after P.D. Edwards et al. [63]).
Fig. 10.  Typical backscattered scanning-electron-microscopic images of mill-annealed material (after J. Su et al. [42]).
Fig. 11.  Scanning-electron-microscopic micrographs illustrating microstructures in different locations of heat-affected zone: near base material (a, d), in the central part (b, e), and near stir zone (c, f). After J. Su et al. [42].
Fig. 12.  Scanning-electron-microscopic micrographs illustrating inhomogeneous microstructure distribution throughout the stir zone thickness: (a) the microstructure near the upper surface of the stir zone, (b) the microstructure in the stir zone mid-thickness, (c) the microstructure in the bottom part of the stir zone, and (d) the microstructure at the weld root (after S. Yoon et al. [9]).
Fig. 13.  Typical microstructures which may be observed in stir zone depending on peak temperature: (a) globular (after A.L. Pilchak et al. [34]), (b) bimodal (after A.L. Pilchak et al. [35]), (c) β transformed (after A.L. Pilchak et al. [24]).
Fig. 14.  Typical 0001 pole figures measured in (a) globular microstructure, and (b) β transformed microstructure (after S. Yoon et al. [9]). In the pole figures, ND and TD are normal direction and transverse direction, respectively.
Fig. 15.  Examples of microhardness profiles measured in friction-stirred material: (a) after Y. Zhang et al. [58], (b) after A.R. Nasresfahani et al. [29], (c) after L. Zhou et al. [17].
Fig. 16.  Microhardness maps showing microhardness variation within stir zone as well as with thickness of the stirred material, after P.D. Edwards et al. [63].
Fig. 17.  (a) Typical deformation diagrams illustrating longitudinal tensile behavior of stir zone material (after J. Su et al. [42]), and (b) effect of spindle speed on strength of the stir zone material (after Y. Zhang et al. [58]).
Fig. 18.  Preferential strain localization in heat-affected zone during transverse tensile tests of friction-stir joints (after M. Ramulu et al. [74]).
Fig. 19.  Typical effect of spindle speed on strength (a) and ductility (b) of friction-stir joints. (after Y. Zhang et al. [58]).
Fig. 20.  Typical fracture locations observed in friction-stir joints: (a) heat-affected zone, and (b) stir zone. (after S. Ji et al. [19]). Note: In (b), the weld was produced by using the backing-plate-heating technique [19].
Fig. 21.  (a) Typical example of fatigue behavior of friction-stir joints (after P. Edwards et al. [44]), and (b) variation of fatigue crack propagation rate in different microstructural regions of friction-stir weld (after S. Pasta et al. [38]).
Fig. 22.  Effect of microstructure morphology in stir zone on fracture toughness (after K. Kitamura et al. [8]).
Fig. 23.  (a) Inhomogeneous superplastic performance of friction-stir joints (after P.D. Edwards et al. [80]), (b) deformation diagrams illustrating superplastic behavior of β transformed structure in stir zone (after L.H. Wu et al. [31]).
Fig. 24.  Backscattered scanning-electron-microscopic images of (a) β transformed microstructure and (b) globular microstructure in stir zone after 50 h immersion in 20% HCl (after M. Atapour et al. [39]).
Fig. 25.  Superplastically formed 4 m diameter Ti-6Al-4V engine inlet (after D.G. Sanders et al. [71]).
Fig. 26.  A prototype combat vehicle hull fabricated by using FSW (Courtesy of EWI).
[1] W.M.Thomas, Friction stir butt welding, Int. Patent No PCT/GB92/02203(1991).
[2] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee,Scripta Mater. 41 (1999) 163-168, .
[3] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78, .
[4] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Prog. Mater. Sci. 53 (2008)980-1023, .
[5] B. Li, Y. Shen, L. Luo, W. Hu, Sci. Eng. A 574 (2013) 75-85, .
[6] Z. Ding, C.J. Zhang, L. Xie, L.-C. Zhang, L.Wang, W. Lu, Metall. Mater. Trans. A47A(2016) 5675-5679.
[7] B. Li, Y. Shen, L. Luo, W. Hu, Z. Zhang, Mater. Des. 49 (2013) 647-656, .
[8] K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, Y. Morisada, Mater. Des. 46 (2013)348-354, .
[9] S. Yoon, R. Ueji, H. Fujii, Mater. Charact. 106 (2015) 352-358, .
[10] L. Fratini, F. Micari, G. Buffa, V.F. Ruisi, CIRP Ann. - Manuf. Technol. 59 (2010)271-274, .
[11] J. Wang, J. Su, R.S. Mishra, R. Xu, J.A. Baumann, Wear 321 (2014) 25-32, .
[12] B. Li, Y. Shen, W. Hu, L. Luo, Surf. Coat. Technol. 239 (2014) 160-170, .
[13] L. Zhou, H.J. Liu, P. Liu, Q.W. Liu, Scripta Mater. 61 (2009) 596-599, .
[14] H.J. Liu, L. Zhou, Q.W. Liu, Scripta Mater. 61 (2009) 1008-1011, .
[15] A.L. Pilchak, M.C. Juhas, J.C. Williams, Metall. Mater. Trans. A 38 (2007)401-408.
[16] S. Ji, Z. Li, L. Zhang, Y. Wang, Mater. Lett. 188 (2017) 21-24, .
[17] L. Zhou, H.J. Liu, Q.W. Liu, Mater. Des. 31 (2010) 2631-2636, .
[18] H.J. Liu, L. Zhou, Q.W. Liu, Mater. Des. 31 (2010) 1650-1655, .
[19] S. Ji, Z. Li, Y. Wang, L. Ma, Mater. Des. 113 (2017) 37-46, .
[20] L. Zhou, H.J. Liu, Mater. Charact. 62 (2011) 1036-1041, .
[21] L. Zhou, H.J. Liu, Int. J. Hydr. Energy 35 (2010) 8733-8741, .
[22] H.J. Liu, L. Zhou, Trans. Nonferrous. Met. Soc. China 20 (2010) 1873-1878.
[23] L. Zhou, H.J. Liu, L.Z. Wu, Trans. Nonferrous Met. Soc. China 24 (2014)368-372, .
[24] A.L. Pilchak, W. Tang, H. Sahiner, A.P. Reynolds, J.C. Williams, Metall. Mater.Trans. A 42A (2011) 745-762, .
[25] H. Farnoush, A.A. Bastami, A. Sadeghi, J.A. Mohandesi, F. Moztarzadeh, J. Mech,Behav. Biomed. Mater. 20 (2013) 90-97, .
[26] A. Farias, G.F. Batalha, E.F. Prados, R. Magnabosco, S. Delijaicov, Wear 302(2013) 1327-1333, .
[27] B. Li, Y. Shen, W. Hu, Appl. Surf. Sci. 274 (2013) 356-364, .
[28] J. Wang, J. Su, R.S. Mishra, R. Xu, J.A. Baumann, Wear 302(2013) 1327-1333, .
[29] A.R. Nasresfahani, A.R. Soltanipur, K. Farmanesh, A. Ghasemi, Mater. Sci.Technol. 33 (2017) 583-591, .
[30] A. Fall, Mostafa H. Fesharaki, A.R. Khodabandeh, M. Jahazi, Metals 6 (2016)275, .
[31] L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, Y.S. Zeng, Scripta Mater. 98(2015) 44-47, .
[32] L.H. Wu, P. Xue, B.L. Xiao, Z.Y. Ma, Scripta Mater. 122 (2016) 26-30, .
[33] G. Buffa, A. Ducato, L. Fratini, Mater. Sci. Eng. A 581 (2013) 56-65, .
[34] A.L. Pilchak, D.M. Norfleet, M.C. Juhas, J.C. Williams, Wear 302(2013) 1327-1333, .
[35] A.L. Pilchak, J.C. Williams, Metall. Mater. Trans. A 42A (2011) 1630-1645.
[36] M. Esmaily, S.N. Mortazavi, P. Todehfalah, M. Rashidi, Mater. Des. 47 (2013)143-150, .
[37] S. Pasta, A.P. Reynolds, Strain 44 (2008) 147-152.
[38] S. Pasta, A.P. Reynolds, Fatigue Fract. Eng. Mater. Struct. 31 (2008) 569-580,.
[39] M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, Corros. Sci. 52 (2010)3062-3069, .
[40] A. Lauro, Weld. Int. 26 (2012) 8-21, .
[41] G. Buffa, L. Fratini, M. Schneider, M. Merklein, J. Mater, Wear 302(2013) 1327-1333, .
[42] J. Su, J. Wang, R.S. Mishra, R. Xu, J.A. Baumann, Mater. Sci. Eng. A 573 (2013)67-74, .
[43] J.C. Lippold, J.J. Livingston, Metall. Mater. Trans. A 44 (2013) 3815-3825.
[44] P. Edwards, M. Ramulu, J. Eng. Mater. Technol. 132 (2010) 031006-031016,.
[45] A. Steuwer, D.G. Hattingh, M.N. James, U. Singh, T. Buslaps, Sci. Technol. Weld.Join. 17 (2012) 525-533, .
[46] P. Edwards, M. Ramulu, Sci. Technol. Weld. Join. 15 (2010) 468-472, .
[47] P. Edwards, M. Ramulu, Sci. Technol. Weld. Join. 14 (2009) 669-680, .
[48] P.D. Edwards, M. Ramulu, J. Mater. Proc. Technol. 218 (2015) 107-115, .
[49] P. Edwards, M. Ramulu, J. Mater. Eng. Perform. 24 (2015) 3263-3270, .
[50] P. Edwards, M. Ramulu, Fatig. Fract. Eng. Mater. Struct. 38 (2015) 970-982,.
[51] P.D. Edwards, M. Ramulu, Fatigigue Fract. Eng. Mater. Struct. 39 (2016)1226-1240, .
[52] M. Muzvidziwa, M. Okazaki, K. Suzuki, S. Hirano, Mater. Sci. Eng. A 652 (2016)59-68, .
[53] S. Yoon, R. Ueji, H. Fujii, Mater. Des. 88 (2015) 1269-1276, .
[54] S. Yoon, R. Ueji, H. Fujii, J. Mater. Process. Technol. 229 (2016) 390-397,.
[55] Y.S. Sato, S. Susukida, H. Kokawa, T. Omori, K. Ishida, S. Imano, S.H.C. Park, I.Sugimoto, S. Hirano, Proceedings of 11th International Symposium on FrictionStir Welding, Cambridge, UK, 2016, CD-ROM.
[56] S. Mironov, Y. Zhang, Y.S. Sato, H. Kokawa, Scripta Mater. 59 (2008) 511-514,.
[57] S. Mironov, Y. Zhang, Y.S. Sato, H. Kokawa, Scripta Mater. 59 (2008) 27-30,.
[58] Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Mater. Sci. Eng. A 485(2008) 448-455, .
[59] T. Nakazawa, K. Tanaka, K. Sakairi, Y.S. Sato, H. Kokawa, T. Omori, K. Ishida, S.Hirano, Proceedings of 11th International Symposium on Friction StirWelding, Cambridge, UK, 2016, CD-ROM.
[60] L.H. Wu, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Chem. Phys. 146 (2014) 512-522,.
[61] X.J. Pei, P.S. Dong, Sci. Technol. Weld. Join. 19 (2014) 416-426, .
[62] D.G. Sanders, M. Ramulu, P.D. Edwards, A. Cantrell, J. Mater. Eng. Perform. 19(2010) 503-509, .
[63] P.D. Edwards, M. Ramulu, Sci. Technol. Weld. Join. 14 (2009) 476-483, .
[64] M. Ramulu, P.D. Edwards, D.G. Sanders, A.P. Reynolds, T. Trapp, Mater. Design31 (2010) 3056-3061, .
[65] M. Atapour, A.L. Pilchak, G.S. Frankel, J.C. Williams, Metall Mater. Trans. A 41A(2010) 2318-2327.
[66] A.L. Pilchak, J.C. Williams, Metall. Mater. Trans. A 42A (2011) 773-794.
[67] P. Edwards, M. Ramulu, Int. J. Fatigue 75 (2015) 19-27.
[68] P.S. Davies, B.P. Wynne, W.M. Rainforth, M.J. Thomas, P.L. Threadgill, Metall.Mater. Trans. A 42A (2011) 2278-2289.
[69] X. Jiang, B.P. Wynne, J. Martin. Sci.Technol. Weld. Join. 20(2015) 594-600.
[70] L.H. Wu, D. Wang, B.L. Xiao, Z.Y. Ma, Scripta Mater. 78-79 (2014) 17-20,.
[71] D.G. Sanders, M. Ramulu, P.D. Edwards, Mat.-wiss. u. Werkstofftech. 39 (2008)353-357, .
[72] D.G. Sanders, P. Edwards, A.M. Cantrell, K. Gangwar, M. Ramulu, JOM 67(2015) 1054-1063, .
[73] P.D. Edwards, D.G. Sanders, M. Ramulu, Mater. Eng. Perform. 19 (2010)510-514, .
[74] M. Ramulu, P. Labossiere, T. Greenwell, Opt. Laser. Eng. 48 (2010) 385-392,.
[75] Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams, Scripta Mater. 58 (2008)361-366, .
[76] J.S. Tiley, A.R. Shiveley, A.L. Pilchak, P.A. Shade, M.A. Groeber, J. Microsc. 255(2014) 71-77, .
[77] S. Mironov, Y.S. Sato, H. Kokawa, Key Eng. Mater. 508(2012)106-111.
[78] D.G. Sanders, M. Ramulu, E.J. Klock-McCook, P.D. Edwards, A.P. Reynolds, T.Trapp, J. Mater, Eng. Perform. 17 (2008) 187-192, .
[79] D.G. Sanders, M. Ramulu, P.D. Edwards, A. Cantrell, J. Mater, Eng. Perform. 19(2010) 503-509, .
[80] P.D. Edwards, D.G. Sanders, M. Ramulu, G. Grant, T. Trapp, P. Comley, J. Mater,Eng. Perform. 19 (2010) 481-487, .
[81] J. Bernath, B. Thompson, T. Stotler, Proceedings of 8th InternationalSymposium on Friction Stir Welding, Timmendorfer Strand, Germany, 2010,CD-ROM.
[1] Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 44(0): 76-95.
[2] Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. 材料科学与技术, 2020, 44(0): 24-30.
[3] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[4] Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. 材料科学与技术, 2020, 44(0): 171-190.
[5] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[6] Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting[J]. 材料科学与技术, 2020, 42(0): 1-9.
[7] Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides[J]. 材料科学与技术, 2020, 37(0): 104-113.
[8] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[9] P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems[J]. 材料科学与技术, 2020, 45(0): 215-229.
[10] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[11] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[12] Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[J]. 材料科学与技术, 2020, 46(0): 237-247.
[13] Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study[J]. 材料科学与技术, 2020, 43(0): 119-125.
[14] Xiaochun He, Yang Li, Yongjie Bi, Xiaomei Liu, Bing Zhou, Shangzhou Zhang, Shujun Li. Finite element analysis of temperature and residual stress profiles of porous cubic Ti-6Al-4V titanium alloy by electron beam melting[J]. 材料科学与技术, 2020, 44(0): 191-200.
[15] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.