J. Mater. Sci. Technol. ›› 2015, Vol. 31 ›› Issue (8): 790-797.DOI: 10.1016/j.jmst.2015.06.003
• Orginal Article • Previous Articles Next Articles
Zinaida I. Smirnova1, *, Larisa N. Maskaeva1, 2, Vyacheslav F. Markov1, 2, Vladimir I. Voronin3, Mikhail V. Kuznetsov4
Received:
2014-09-24
Online:
2015-08-20
Contact:
* Corresponding author. Tel./Fax: t7 343 3759318.E-mail addresses: Supported by:
Zinaida I. Smirnova, Larisa N. Maskaeva, Vyacheslav F. Markov, Vladimir I. Voronin, Mikhail V. Kuznetsov. Incubation of PbSe Thin Films in a Tin(II) Salt Aqueous Solution: Modification and Ion-Exchange Reactions[J]. J. Mater. Sci. Technol., 2015, 31(8): 790-797.
Wide scan XPS spectra of the surface of the initial PbSe film, the reference SnSe sample, and the Pb(Sn)Se film obtained by incubating initial PbSe in the citrate-containing 0.05 mol/L SnCl2 solution at ?Н
XPS estimation of the composition of the surface of the PbSe and SnSe films, and the Pb(Sn)Se film obtained by incubating the initial PbSe in the citrate-containing 0.05 mol/L SnCl2 solution at ?Н
XPS estimation of the proportion between tin and lead atomic concentrations at the Pb(Sn)Se surface before and after ion-beam etching for 30, 90, and 210 s (the depth of the film analysis was 3, 9, and 21 nm, respectively).
[1] Optical and Infrared Detectors R.J. Keyes (Ed.), Topics in Applied Physics (second ed.), Vol. 19Springer-Verlag, Berlin, Heidelberg, New York (1980) [2] H. Zogg, K. Alchalabi, D. Zimin, Def. Sci. J., 51 (2001), pp. 53-65 [3] H. Preier, Semicond. Sci. Technol., 5 (1990), pp. S12-S20 [4] A.J. Strauss, Phys. Rev., 157 (1967), pp. 608-611 [5] E. Theocharous, Infrared Phys. Technol., 50 (2007), pp. 63-69 [6] D. Khokhlov, Lead Chalcogenides: Physics & Applications, (second ed.)Taylor & Francis, New York (2003) [7] K.V. Vyatkin, A.P. Shotov, V.V. Ursaki, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 17 (1981), pp. 24-27 (in Russian) [8] S. Charar, A. Obadi, C. Fau, M. Averous, V.D. Ribes, S. Dal Corso, B. Liautard, J.C. Tedenac, S. Brunet, Int. J. Infrared Millimeter Waves, 17 (1996), pp. 365-374 [9] C.P. Li, P.J. McCann, X.M. Fang, J. Cryst. Growth, 208 (2000), pp. 423-430 [10] S. Gad, M.A. Rafea, Y. Badr, J. Alloy. Compd., 515 (2012), pp. 101-107 [11] V.F. Markov, L.N. Maskaeva, L.D. Loshkareva, S.N. Yimin, G.A. Kitaev, Neorg. Mater., 33 (1997), pp. 665-668 (in Russian) [12] V.F. D'yakov, V.F. Markov, L.N. Maskaeva, M.P. Mironov, N.A. Tret'yakova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 51 (2008), pp. 37-40 (in Russian) [13] V.F. Markov, N.A. Tretyakova, L.N. Maskaeva, V.M. Bakanov, H.N. Mukhamedzyanov, Thin Solid Films, 520 (2012), pp. 5227-5231 [14] L.N. Maskaeva, V.F. Markov, V.M. Bakanov, Kh.N. Mukhamedzyanov, Phys. Solid State, 54 (2012), pp. 722-725 [15] H.N. Mukhamedzyanov, V.F. Markov, L.N. Maskaeva, Semiconductors, 48 (2014), pp. 263-267 [16] M.P. Mironov, A.Yu. Kirsanov, V.F. Dyakov, L.N. Maskaeva, V.F. Markov, Butlerov Commun., 19 (2010), pp. 45-53 (in Russian) [17] V.Ph. Markov, H.N. Mukhamedzyanov, L.N. Maskaeva, Z.I. Smirnova, Semiconductors, 45 (2011), pp. 1404-1407 [18] H.N. Mukhamedzyanov, V.F. Markov, L.N. Maskaeva, Semiconductors, 47 (2013), pp. 574-578 [19] Z.I. Smirnova, L.N. Maskaeva, V.I. Voronin, V.F. Markov , Butlerov Commun., 21 (2010), pp. 29-33 (in Russian) [20] L.N. Maskaeva, Z.I. Smirnova, V.I. Voronin, V.F. Markov, Fundam. Probl. Sovrem. Materialoved., 8 (2011), pp. 55-62 (in Russian) [21] N. Forostyanaya, L. Maskaeva, Z. Smirnova, V. Markov, Proceedings of the 19th International Conference on Composite Materials, Montreal, Canada (July 29-August 2, 2013) [22] L.N. Maskaeva, V.Ph. Markov, A.A. Moskaleva, Butlerov Commun., 26 (2011), pp. 36-42 (in Russian) [23] L.N. Maskaeva, E.A. Dubinina, H.N. Mukhamedzyanov, V.Ph. Markov, Butlerov Commun., 27 (2011), pp. 65-70 (in Russian) [24] A.G. Stromberg, D.P. Semchenko (Eds.), Fizicheskaya Khimiya (Physical Chemistry) (forth ed.), Vyshaya Shkola, Moscow (2001) (in Russian) [25] F. Pfisterer, Thin Solid Films, 431-432 (2003), pp. 470-476 [26] M. Sam, M.R. Bayati, M. Mojtahedi, K. Janghorban, Appl. Surf. Sci., 257 (2010), pp. 1449-1453 [27] V.S. Taur, R.A. Joshi, A.V. Ghule, R. Sharma, Renewable Energy, 38 (2012), pp. 219-223 [28] C.A. Estrada, R.A. Zingaro, E.A. Meyers, Thin Solid Films, 247 (1994) 208-2012 [29] W. Shi, J. Shi, S. Yu, P. Liu, Appl. Catal. B, 138-139 (2013), pp. 184-190 [30] H. Zhang, B. Wei, L. Zhu, J. Yu, W. Sun, L. Xu, Appl. Surf. Sci., 270 (2013), pp. 133-138 [31] S.R. Ferrá-González, D. Berman-Mendoza, R. García-Gutiérrez, S.J. Castillo, R. Ramírez-Bon, B.E. Gnade, M.A. Quevedo-López ,Optik (Munich, Ger.), 125 (2014), pp. 1533-1536 [32] J. Jiang, M. Wang, L. Ma, Q. Chen, L. Guo ,Int. J. Hydrogen Energy, 38 (2013), pp. 13077-13083 [33] L. Chen, H. Gong, X. Zheng, M. Zhu, J. Zhang, S. Yang, B. Cao, Mater. Res. Bull., 48 (2013), pp. 4261-4266 [34] S. Gupta, S.V. Kershaw, A.L. Rogach, Adv. Mater. (Weinheim, Ger.), 25 (2013), pp. 6923-6944 [35] R.A. Yusupov, M.R. Gafarov, O.V. Mikhailov ,Zh. Fiz. Khim., 77 (2003), pp. 2030-2035 (in Russian) [36] A.B. Lundin, G.A. Kitaev ,Neorg. Mater., 1 (1965), pp. 2102-2106 (in Russian) [37] G.A. Kitaev, A.B. Lundin, S.G. Mokrushin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 4 (1966), pp. 574-576 (in Russian) [38] R.B. Kale, S.D. Sartale, V. Ganesan, C.D. Lokhande, Yi-Feng Lin, Shih-Yuan Lu, Appl. Surf. Sci., 253 (2006), pp. 930-936 [39] E. Barrios-Salgado, M.T.S. Nair, P.K. Nair, R.A. Zingaro, Thin Solid Films, 519 (2011), pp. 7432-7437 [40] V.B. Spivakovskii, Analiticheskaya Khimiya Olova (Analytical Chemistry of Tin)Nauka, Moscow (1975) (in Russian) [41] H.M. Rietveld, J. Appl. Crystallogr., 2 (1969), pp. 65-71 [42] J. Rodriguez-Carvajal, FULLPROF-2K, Laboratoire Leon Brillouin (CEA-CNRS). [43] L. Vegard, Z. für Physik, 5 (1921), pp. 17-26 [44] L.S. Palatnik, Dokl. Akad. Nauk SSSR, 96 (1954), pp. 975-978 (in Russian) [45] A.V. Chichagov, L.V. Sipavina, Rentgenometricheskie Parametry Tverdykh Rastvorov (X-ray Diffraction Parameters of Solid Solutions)Nauka, Moscow (1982) (in Russian) [46] D.A. Shirley, Phys. Rev. B-Condens. Matter Mater. Phys., 5 (1972), pp. 4709-4713 [47] S. Tougaard, Surf. Sci., 216 (1989), pp. 343-360 [48] A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces(sixth ed.)John Wiley and Sons, Inc., New-York, Chichester (1997) [49] Т.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-electronics Butterworth and Co. Ltd., London (1973) [50] F. Zhao, J. Ma, D. Li, S. Mukherjee, G. Bi, Z. Shi, J. Electron. Mater., 38 (2009), pp. 1661-1665 [51] S.A. Olesk, A.N. Pikhtin, A.E. Yunovich, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 24 (1990), pp. 795-799 (in Russian) [52] M.C. Torquemada, M.T. Rodrigo, G. Vergara, F.J. Sánchez, R. Almazán, M. Verdú, P. Rodríguez, V. Villamayor, L.J. Gómez, M.T. Montojo, J. Appl. Phys., 93 (2003), pp. 1778-1784 [53] A.E. Gamarts, Yu.M. Kanageeva, V.A. Moshnikov, Semiconductors, 39 (2005), pp. 636-637 [54] E.V. Maraeva, V.A. Moshnikov, Yu.M. Tairov, Semiconductors, 47 (2013), pp. 1422-1425 [55] V.M. Bakanov, Z.I. Smirnova, H.N. Mukhamedzyanov, L.N. Maskaeva, V.F. Markov, Kondens. Sredy Mezhfaznye Granitsy, 134 (2011), pp. 401-408 (in Russian) [56] V.P. Popov, P.A. Tikhonov, V.V. Tomaev, Glass Phys. Chem., 29 (2003), pp. 494-500 [57] N.V. Golubchenko, M.A. Iosht, V.A. Moshnikov, D.B. Chesnokova, Perspekt. Mater., 3 (2005), pp. 31-35 (in Russian) [58] N.V. Golubchenko, V.A. Moshnikov, D.B. Chesnokova, Inorg. Mater., 42 (2006), pp. 942-950 [59] V.V. Tomaev, I.V. Chernyshova, P.A. Tikhonov, Glass Phys. Chem., 33 (2007), pp. 646-651 [60] Z.I. Smirnova, L.N. Maskaeva, V.F. Markov, V.I. Voronin, M.V. Kuznetsov, Kondens. Sredy Mezhfaznye Granitsy, 14 (2012), pp. 250-255 (in Russian) [61] W.H. Hall, Proc. Phys. Soc. London Sect. A, 62 (1949), pp. 741-742 [62] W.H. Hall, G.K. Williamson, Proc. Phys. Soc. London Sect. B, 64 (1951), pp. 937-945 [63] G.K. Williamson, W.H. Hall, Acta Metall., 1 (1953), pp. 22-31 [64] M.A. Krivoglaz, Difraktsiya Rentgenovskikh Luchei i Neitronov v Neideal'nykh Kristallakh (Diffraction of X-rays and Neutrons in Imperfect Crystals),Naukova Dumka, Kiev (1983) (in Russian) [65] Ya.S. Umanskii, Yu.A. Skakov, A.N. Ivanov, L.N. Rastorguev, Kristallografiya, Rentgenografiya i Elektronnaya Mikroskopiya (Crystallography, X-ray Diffraction, and Electron Microscopy)Metallurgy, Moscow (1982) (in Russian) [66] V.A. Gan'shin, Yu.N. Korkishko, V.A. Fedorov,Neorg. Mater., 28 (1992), pp. 57-60 (in Russian) |
[1] | Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 46(0): 127-135. |
[2] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[3] | Xu-Ping Wu, Xue-Mei Luo, Hong-Lei Chen, Ji-Peng Zou, Guang-Ping Zhang. A unified model for determining fracture strain of metal films on flexible substrates [J]. J. Mater. Sci. Technol., 2020, 54(0): 87-94. |
[4] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
[5] | Anil K.Battu, Nanthakishore Makeswaran, C.V. Raman. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2734-2741. |
[6] | Aihua Jiang, Meng Qi, Jianrong Xiao. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1467-1473. |
[7] | Pawel Mierczynski, Sergey V. Dubkov, Sergey V. Bulyarskii, Alexander A. Pavlov, Sergey N. Skorik, Alexey Yu Trifonov, Agnieszka Mierczynska, Eugene P. Kitsyuk, Sergey A. Gavrilov, Tomasz P. Maniecki, Dmitry G. Gromov. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method [J]. J. Mater. Sci. Technol., 2018, 34(3): 472-480. |
[8] | Wei Wenzuo, Hong Ruijin, Wang Jinxia, Tao Chunxian, Zhang Dawei. Electron-beam irradiation induced optical transmittance enhancement for Au/ITO and ITO/Au/ITO multilayer thin films [J]. J. Mater. Sci. Technol., 2017, 33(10): 1107-1112. |
[9] | Haifa Zhai, Jizhou Kong, Jien Yang, Jing Xu, Qingran Xu, Hongchen Sun, Aidong Li, Di Wu. Resistive Switching Properties and Failure Behaviors of (Pt, Cu)/Amorphous ZrO2/Pt Sandwich Structures [J]. J. Mater. Sci. Technol., 2016, 32(7): 676-680. |
[10] | Francisco Gontad, Antonella Lorusso, Luigi Solombrino, Ioannis Koutselas, Nikos Vainos, Alessio Perrone. Growth of Niobium Thin Films on Si Substrates by Pulsed Nd:YAG Laser Deposition [J]. J. Mater. Sci. Technol., 2015, 31(8): 784-789. |
[11] | Lei Deng, Shaobo Mi, Dong Chen, Yuanming Wang, Xiuliang Ma. Structural and Electronic Properties of BaO/MgO(001)-type Interface Studied via Aberration-corrected Transmission Electron Microscopy and First-principles Calculations [J]. J. Mater. Sci. Technol., 2015, 31(2): 205-209. |
[12] | A.U. Ubale, M.R. Belkhedkar. Size Dependent Physical Properties of Nanostructured α-Fe2O3 Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method for Antibacterial Application [J]. J. Mater. Sci. Technol., 2015, 31(1): 1-9. |
[13] | Xinwen Huang, Zongjian Liu. Comparative Study of the Structure and Properties of Ti-O-based Nanowire Films Prepared by Anodization and Chemical Oxidation Methods [J]. J. Mater. Sci. Technol., 2014, 30(9): 878-883. |
[14] | Guohua Dong, Guoqiang Tan, Wenlong Liu, Ao Xia, Huijun Ren. Effect of Tb Doping on Structural and Electrical Properties of BiFeO3 Thin Films Prepared by Sol–Gel Technique [J]. J. Mater. Sci. Technol., 2014, 30(4): 365-370. |
[15] | N. Khedmi, M. Ben Rabeh, M. Kanzari. Structural Morphological and Optical Properties of SnSb2S4 Thin Films Grown by Vacuum Evaporation Method [J]. J. Mater. Sci. Technol., 2014, 30(10): 1006-1011. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||