J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (7): 676-680.DOI: 10.1016/j.jmst.2016.03.011
• Orginal Article • Previous Articles Next Articles
Haifa Zhai1, 2, *, Jizhou Kong2, 3, Jien Yang1, Jing Xu1, Qingran Xu1, Hongchen Sun1, Aidong Li2, *, Di Wu2
Received:
2015-10-09
Revised:
2015-12-13
Online:
2016-07-10
Published:
2016-10-10
Contact:
Corresponding authors. Ph.D.; Tel.: +86 25 83594689; Fax: +86 25 83595535. E-mail addresses: Supported by:
Haifa Zhai, Jizhou Kong, Jien Yang, Jing Xu, Qingran Xu, Hongchen Sun, Aidong Li, Di Wu. Resistive Switching Properties and Failure Behaviors of (Pt, Cu)/Amorphous ZrO2/Pt Sandwich Structures[J]. J. Mater. Sci. Technol., 2016, 32(7): 676-680.
(a) XRD patterns of ZrO2 thin films annealed at 300-700?°C under N2 atmosphere; (b) and (c) XPS spectra of Zr 3d and O 1s in the ZrO2 thin films annealed at 300?°C, respectively.
Typical unipolar I-V characteristics of Pt/ZrO2/Pt (a) and Cu/ZrO2/Pt (b) structures, respectively. During the set process, the current is limited to a compliance of 0.5?mA to prevent the permanent breakdown of the structures.
Resistive switching characteristics of Pt/ZrO2/Pt (a) and Cu/ZrO2/Pt (b) structures for a “write-read-erase-read” consequence at a reading voltage of 0.1?V, respectively.
Plots of I-V characteristics of the Pt/ZrO2/Pt structure in ON state, double-logarithmic scale (a); OFF state, lnI versus sqrtV (b); and the Cu/ZrO2/Pt device in ON state, double-logarithmic scale (c), OFF state (d).
[1] M.Y. Chan, T. Zhang, V. Ho, P.S. Lee. Microelectron. Eng, 85 (2008), pp. 2420-2424 [2] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy. IBM J. Res. Dev, 52 (2008), pp. 449-464 [3] Y. Fujisaki. Jpn J. Appl. Phys, 49 (2010), p. 10001 [4] A. Sawa. Mater. Today, 11 (2008), pp. 28-36 [5] Y.T. Li, S.B. Long, M.H. Zhang, Q. Liu, S. Zhang, Y. Wang, Q.Y. Zuo, S. Liu, M. Liu. IEEE Electron Dev. Lett, 31 (2010), pp. 117-119 [6] J.S. Huang, L.M. Chen, T.Y. Lin, C.Y. Lee, T.S. Chin. Thin Solid Films, 544 (2013), pp. 134-138 [7] R. Waser, M. Anon. Nat. Mater, 6 (2007), pp. 833-840 [8] C.Y. Liu, Z.Y. Huang, C.H. Lai. Thin Solid Films, 584 (2015), pp. 326-329 [9] H.F. Zhai, X.J. Liu, Y.Q. Cao, J.Z. Kong, X. Qian, Z.Y. Cao, A.D. Li, Y.D. Xia, D. Wu. Appl. Phys. A Mater. Sci. Process, 118 (2015), pp. 1365-1370 [10] H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, M.J. Tsai, C. Lien. Appl. Phys. Lett, 92 (2008) 142911 [11] D.L. Xu, Y. Xiong, M.H. Tang, B.W. Zeng, Y.G. Xiao. Appl. Phys. Lett, 104 (2014) 183501 [12] D. Oh, D.Y. Yun, N.H. Lee, T.W. Kim. Thin Solid Films, 587 (2015), pp. 71-74 [13] B.W. Zeng, D.L. Xu, M.H. Tang, Y.G. Xiao, Y.Z. Zhou, R.X. Xiong, Z. Li, Y.C. Zhou. J. Appl. Phys, 116 (2014) 124514 [14] Q. Liu, W.H. Guan, S.B. Long, R. Jia, M. Liu, J.N. Chen. Appl. Phys. Lett, 92 (2008) 012117 [15] W.H. Guan, M. Liu, S.B. Long, Q. Liu, W. Wang. Appl. Phys. Lett, 93 (2008) 223506 [16] W.H. Guan, S.B. Long, R. Jia, M. Liu. Appl. Phys. Lett, 91 (2007) 062111 [17] C.Y. Lin, C.Y. Wu, C.Y. Wu, T.C. Lee, F.L. Yang, C.M. Hu, T.Y. Tseng. IEEE Electron Dev. Lett, 28 (2007), pp. 366-368 [18] J. Shang, G. Liu, H.L. Yang, X.J. Zhu, X.X. Chen, H.W. Tan, B.L. Hu, L. Pan, W.H. Xue, R.W. Li. Adv. Funct. Mater, 24 (2014), pp. 2171-2179 [19] P. Rauwel, E. Rauwel, C. Persson, M.F. Sunding, A. Galeckas. J. Appl. Phys, 112 (2012) 104107 [20] C.C. Lin, B.C. Tu, C.C. Lin, C.H. Lin, T.Y. Tseng. IEEE Electron Dev. Lett, 27 (2007), pp. 725-727 [21] G.S. Park, X.S. Li, D.C. Kim, R.J. Jung, M.J. Lee, S. Seo. Appl. Phys. Lett, 91 (2007) 222103 [22] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura. Appl. Phys. Lett, 86 (2005) 012107 [23] T. Driscoll, H.T. Kim, B.G. Chae, M.D. Ventra, D.N. Basov. Appl. Phys. Lett, 95 (2009) 043503 [24] G. Ehrhart, B. Capoen, O. Robbe, P. Boy, S. Turrell, M. Bouazaoui. Thin Solid Films, 496 (2006), pp. 227-233 [25] G. Ehrhart, M. Bouazaoui, B. Capoen, V. Ferreiro, R. Mahiou, O. Robbe, S. Turrell. Opt. Mater, 29 (2007), pp. 1723-1730 [26] O.A. Bulavchenko, Z.S. Vinokurov, T.N. Afonasenko, P.G. Tsyrul′nikov, S.V. Tsybulya, A.A. Saraev, V.V. Kaicheva. Dalton Trans, 44 (2015), pp. 15499-15507 [27] E. Martinez, C. Guedj, P. Calka, S. MInoret, J. Buckley, Y. Bernard, V. Jousseaume. Surf. Interface Anal, 42 (2010), pp. 783-786 [28] Y.H. Kim, J.S. Heo, T.H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park. Nature, 489 (2012), pp. U128-U191 [29] L.L. Zou, W. Hu, W. Xie, R.Q. Chen, N. Qin, B.J. Li, D.H. Bao. Appl. Surf. Sci, 311 (2014), pp. 697-702 [30] W.H. Guan, S.B. Long, Q. Liu, M. Liu, W. Wang. IEEE Electron Dev. Lett, 29 (2008), pp. 434-437 [31] B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, J.F. Kang. J. Appl. Phys, 105 (2009) 061630 [32] H.Y. Lee, Y.S. Chen, P.S. Chen, T.Y. Wu, F. Chen, C.C. Wang, P.J. Tzeng, M.J. Tsai, C. Lien. IEEE Electron Dev. Lett, 31 (2010), pp. 44-46 [33] Q.Q. Sun, J.J. Gu, L. Chen, P. Zhou, P.F. Wang, S.J. Ding, D.W. Zhang. IEEE Electron Dev. Lett, 32 (2011), pp. 1167-1169 [34] X. Wu, P. Zhou, J. Li, L.Y. Chen, H.B. Lv, Y.Y. Lin, T.A. Tang. Appl. Phys. Lett, 90 (2007) 183507 [35] C.Y. Liu, Y.H. Huang, J.Y. Ho, C.C. Huang. J. Phys. D Appl. Phys, 44 (2011) 205103 [36] J.P. Strachan, D.B. Strukov, J. Borghetti, J.J. Yang, G. Mediros-Ribeiro, R.S. Williams. Nanotechnology, 22 (2011) 254015 |
[1] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[2] | Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 46(0): 127-135. |
[3] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
[4] | S.D. Ji, Q. Wen, Z.W. Li. A novel friction stir diffusion bonding process using convex-vortex pin tools [J]. J. Mater. Sci. Technol., 2020, 48(0): 23-30. |
[5] | Xu-Ping Wu, Xue-Mei Luo, Hong-Lei Chen, Ji-Peng Zou, Guang-Ping Zhang. A unified model for determining fracture strain of metal films on flexible substrates [J]. J. Mater. Sci. Technol., 2020, 54(0): 87-94. |
[6] | Qiaomu Liu, Shunzhou Huang, Aijie He. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines [J]. J. Mater. Sci. Technol., 2019, 35(12): 2814-2823. |
[7] | Anil K.Battu, Nanthakishore Makeswaran, C.V. Raman. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2734-2741. |
[8] | Shaolin Li, Lehua Qi, Ting Zhang, Jiming Zhou, Hejun Li. Interfacial failure behavior of PyC-Cf/AZ91D composite fabricated by LSEVI [J]. J. Mater. Sci. Technol., 2018, 34(9): 1602-1608. |
[9] | Aihua Jiang, Meng Qi, Jianrong Xiao. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1467-1473. |
[10] | Wei Kong?, Wenxuan Zhang, Hongyan Huang, Yukun Zhang, Jie Wu, Yu Xu. Analysis of micro-tubular SOFC stability under ambient and operating temperatures [J]. J. Mater. Sci. Technol., 2018, 34(8): 1436-1440. |
[11] | Zhiwu Xu, Zhengwei Li, Shude Ji, Liguo Zhang. Refill friction stir spot welding of 5083-O aluminum alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 878-885. |
[12] | Pawel Mierczynski, Sergey V. Dubkov, Sergey V. Bulyarskii, Alexander A. Pavlov, Sergey N. Skorik, Alexey Yu Trifonov, Agnieszka Mierczynska, Eugene P. Kitsyuk, Sergey A. Gavrilov, Tomasz P. Maniecki, Dmitry G. Gromov. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method [J]. J. Mater. Sci. Technol., 2018, 34(3): 472-480. |
[13] | Shao Chendong, Lu Fenggui, Wang Xiongfei, Ding Yuming, Li Zhuguo. Microstructure characterization and HCF fracture mode transition for modified 9Cr-1Mo dissimilarly welded joint at different elevated temperatures [J]. J. Mater. Sci. Technol., 2017, 33(12): 1610-1620. |
[14] | Wei Wenzuo, Hong Ruijin, Wang Jinxia, Tao Chunxian, Zhang Dawei. Electron-beam irradiation induced optical transmittance enhancement for Au/ITO and ITO/Au/ITO multilayer thin films [J]. J. Mater. Sci. Technol., 2017, 33(10): 1107-1112. |
[15] | Zhi Liu, Kan Song, Bo Gao, Tian Tian, Haiou Yang, Xin Lin, Weidong Huang. Microstructure and Mechanical Properties of Al2O3/ZrO2 Directionally Solidified Eutectic Ceramic Prepared by Laser 3D Printing [J]. J. Mater. Sci. Technol., 2016, 32(4): 320-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||