Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (9): 1467-1473    DOI: 10.1016/j.jmst.2018.02.025
Orginal Article Current Issue | Archive | Adv Search |
Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review
Aihua Jiang, Meng Qi, Jianrong Xiao*()
College of Science, Guilin University of Technology, Guilin 541004, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Copper nitride (Cu3N) thin films display typical trans-rhenium trioxide structures. They exhibit excellent physical properties, low cost, nontoxicity, and high stability under room temperature. However, they possess low-thermal decomposition temperature, and their lattice constant often changes significantly with prepared technologies or techniques, thereby enabling the transformation from insulators to semiconductors and even conductors. Moreover, Cu3N thin films are becoming the new research hotspot of optical information storage devices, microelectronic semiconductor materials, and new energy materials. In this study, existing major prepared technologies of Cu3N thin films are summarized. Influences of prepared technologies of Cu3N thin films on crystal structure of films, as well as influences of prepared conditions and methods (e.g., nitrogen pressure, deposition power, substrate temperature, and element addition) on crystal structure and optical, electrical, and thermal properties of films were analyzed. The relationship between crystal structure and physical properties of Cu3N thin films was explored. Finally, applications of Cu3N thin films in photoelectricity, energy sources, nanometer devices, and other fields were discussed.

Key words:  Cu3N thin films      Magnetron sputtering      Crystal structure      Properties      Applications     
Received:  28 July 2017     
Corresponding Authors:  Xiao Jianrong     E-mail:  xjr@glut.edu.cn

Cite this article: 

Aihua Jiang, Meng Qi, Jianrong Xiao. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review. J. Mater. Sci. Technol., 2018, 34(9): 1467-1473.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2018.02.025     OR     https://www.jmst.org/EN/Y2018/V34/I9/1467

Fig. 1.  SEM images of the surface morphology of the Cu3N thin films: (a) Ref. [64], (b) Ref. [35], (c) Ref. [66].
Fig. 2.  XRD spectra of Cu3N films deposited at different r, and the discharge power and substrate temperature were maintained at 100 W and 393 K, respectively. (Ref. [22]).
Fig. 3.  Transmission electron microscopic image of the copper nitride deposit. A Cu particle is highlighted [71].
Fig. 4.  Schematic view of the anti-ReO3 crystal structure of Cu3N structure [23].
Fig. 5.  Lattice constants and optical band gap of the Cu3N thin films as a function of r [22].
Fig. 6.  Lattice constant as a function of substrate temperature (a) and RF power (b) [43].
Fig. 7.  LAPW energy bands and total density of states for (a) Cu3N, (b) Cu3NPd [72].
Fig. 8.  (a) XRD spectra of Cu3N thin films deposited at r = 0.5 before and after annealed; (b) thermal analysis of Cu3N thin films deposited at various r [22].
Fig. 9.  (a) Microscopic image after the electron beam writing of surface area of 3 mm × 3 mm and 1 mm × 1 mm. An array of dots was observed in the exposed area of a 20 kV electron beam [28]; (b) Data written on a Cu3N-layer. Linear velocity 3.5 m/s, pulse power 28 mW, pulse length 250, 300, 350, and 400 ns, and the smallest diameter of a single bit is 0.9 mm [90].
[1] A.A. Yu, Y.H. Ma, A.S. Chen, Y.Y. Li, Y.H. Zhou, Z.C. Wang, J. Zhang, L. Chu, J.N. Yang, X.A. Li, Vacuum, 141(2017), pp. 243-248
[2] M.G.Moreno-Armenta, G.Soto, Solid State Sci., 10(2008), pp. 573-579
[3] R. Deshmukh, E. Tervoort, J. Kach, F. Rechberger, M. Niederberger, Dalton Trans., 45(2016), pp. 11616-11619
[4] Z. Wang, X.Q. Cao, D.N. Liu, S. Hao, R.M. Kong, G. Du, A.M. Asiri, X.P. Sun, Chem.-Eur. J., 23(2017), pp. 4986-4989
[5] C.Y. Su, B.H. Liu, T.J. Lin, Y.M. Chi, C.C. Kei, K.W. Wang, T.P. Perng, J. Mater. Chem. A, 3(2015), pp. 18983-18990
[6] A. Strozecka, J.C. Li, R. Schurmann, G. Schulze, M. Corso, F. Schulz, C. Lotze, S. Sadewasser, K.J. Franke, J.I. Pascual, Phys. Rev. B, 90(2014), p. 195420
[7] J.R. Wang, F. Li, X.B. Liu, H.C. Zhou, X.F. Shao, Y.Y. Qu, M.W. Zhao, J. Mater. Chem. A, 5(2017), pp. 8762-8768
[8] J. Timoshenko, A. Anspoks, A. Kalinko, A. Kuzmin, Acta Mater., 129(2017), pp. 61-71
[9] G.G. Zhang, P.X. Yan, Z.G. Wu, J. Wang, J.T. Chen, Appl. Surf. Sci., 254(2008), pp. 5012-5015
[10] X.L. Tian, H.B. Tang, J.M. Luo, H.X. Nan, T. Shu, L. Du, J.H. Zeng, S.J. Liao, R.R. Adzic, ACS Catal., 7(2017), pp. 3810-3817
[11] D.I. Bazhanov, O.V. Stepanyuk, O.V. Farberovich, V.S. Stepanyuk, Phys. Rev. B., 93(2016), p. 035444
[12] K. Matsuzaki, T. Okazaki, Y.S. Lee, H. Hosono, T. Susaki, Appl. Phys. Lett., 105(2014), p. 35004
[13] X.J. Li, A.L. Hector, J.R. Owen, J. Phys. Chem. C, 118(2014), pp. 29568-29573
[14] X.Y. Fan, Z.J. Li, A.L. Meng, C. Li, Z.G. Wu, P.X. Yan, J. Phys. D Appl. Phys., 47(2014), p. 185304
[15] V.C. Zoldan, R. Faccio, C.L. Gao, A.A. Pasa, J. Phys. Chem. C, 117(2013), pp. 15984-15990
[16] T. Nakamura, H. Hayashi, T. Ebina, J. Nanopart. Res., 16(2014), p. 2699
[17] A. Daoudi, B.A. Touimi, J.P. Flament, G. Berthier, J. Mol. Spectrosc., 194(1999), p. 8
[18] G.H. Yue, P.X. Yan, J.Z. Liu, M.X. Wang, M. Li, X.M. Yuan, J. Appl. Phys., 98(2005), p. 890
[19] J.F. Pierson, D. Horwat, Scripta Mater., 58(2008), pp. 568-570
[20] T. Wang, X.J. Pan, X.M. Wang, H.G. Duan, R.S. Li, H. Li, E.Q. Xie, Appl. Surf. Sci., 254(2008), pp. 6817-6819
[21] L.X. Yang, J.G. Zhao, Y. Yu, F.Y. Li, R.C. Yu, C.Q. Jin, Chin. Phys. Lett., 23(2006), pp. 426-427
[22] J.R. Xiao, Y.W. Li, A.H. Jiang, J. Mater. Sci. Technol., 27(2011), pp. 403-407
[23] W. Yu, J.G. Zhao, C.Q. Jin, Phys. Rev. B, 72(2005), p. 214116
[24] D.M. Borsa, S. Grachev, C. Presura, D.O. Boerma, Appl. Phys. Lett., 80(2002), pp. 1823-1825
[25] J. Blucher, K. Bang, B.C. Giessen, Mater. Sci. Eng. A, 117(1989), pp. L1-L3
[26] Z.G. Wu, W.W. Zhang, L.F. Bai, J. Wang, P.X. Yan, Acta Phys. Sin-Cin-Ch. Ed., 54(2005), pp. 1687-1692(in Chinese)
[27] M. Asano, K. Umeda, A. Tasaki, Jpn J. Appl. Phys., 29(1990), pp. 1985-1986
[28] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Appl. Surf. Sci., 169(2001), pp. 358-361
[29] D.M. Borsa, D.O. Boerma, Surf. Sci., 548(2004), pp. 95-105
[30] Q.A. Lu, X. Zhang, W. Zhu, Y.N. Zhou, Q.F. Zhou, L.L. Liu, X.J. Wu, Phys. Status Solidi A, 208(2011), pp. 874-877
[31] J. Wang, J.T. Chen, X.M. Yuan, Z.G. Wu, B.B. Miao, P.X. Yan, J. Cryst. Growth, 286(2006), pp. 407-412
[32] L. Maya, J. Vac. Sci. Technol. A, 11(1993), pp. 604-608
[33] A.N. Fioretti, C.P. Schwartz, J. Vinson, D. Nordlund, D. Prendergast, A.C. Tamboli, C.M. Caskey, F. Tuomisto, F. Linez, S.T. Christensen, E.S. Toberer, S. Lany, A. Zakutayev, J. Appl. Phys., 119(2016), pp. 32-41
[34] M.G.Moreno-Armenta, A.Martinez-Ruiz, N. Takeuchi, Solid State Sci., 6(2004), pp. 9-14
[35] G.H. Yue, P.X. Yan, J. Wang, J. Cryst. Growth, 274(2005), pp. 464-468
[36] N. Pereira, L. Dupont, J.M. Tarascon, L.C. Klein, G.G. Amatucci, J. Electrochem. Soc., 150(2003), pp. A1273-A1280
[37] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Thin Solid Films, 348(1999), pp. 8-13
[38] T. Wang, R.S. Li, X.J. Pan, P.Z. Zhang, M. Zhou, X. Song, E.Q. Xie, Chin. Phys. Lett., 26(2009), pp. 236-238
[39] R. Juza, H. Hahn, Z. Anorg, Allg. Chem., 241(1939), pp. 172-178
[40] J.M. Burkstrand, G.G. Kleiman, G.G. Tibbetts, J.C. Tracy, J. Vac. Sci. Technol., 13(1976), pp. 291-295
[41] U. Zachwieja, H. Jacobs, Cheminform, 21(1990), p. 45030
[42] S. Terada, H. Tanaka, K. Kubota, J. Cryst. Growth, 94(1989), pp. 567-568
[43] T. Maruyama, T. Morishita, J. Appl. Phys., 78(1995), pp. 4104-4107
[44] J.R. Xiao, H. Xu, Y.F. Li, M.J. Li, Acta Phys. Sin.-Ch. Ed., 56(2007), pp. 4169-4174
[45] S. Ghosh, F. Singh, D. Choudhary, D.K. Avasthi, V. Ganesan, P. Shah, A. Gupta, Surf. Coat. Tech., 142(2001), pp. 1034-1039
[46] K.J. Kim, J.H. Kim, J.H. Kang, J. Cryst. Growth, 222(2001), pp. 767-772
[47] A. Majumdar, S. Drache, H. Wulff, A.K. Mukhopadhyay, S. Bhattacharyya, C.A. Helm, R. Hippler, Coatings, 7(2017), p. 64
[48] Y.H. Zhao, Q.X. Zhang, S.J. Huang, J. Zhang, S.L. Ren, H.Y. Wang, L.X. Wang, T. Yang, J.P. Yang, X.A. Li, J. Supercond. Nov. Magn., 29(2016), pp. 2351-2357
[49] F. Hadian, A. Rahmati, H. Movla, M. Khaksar, Vacuum, 86(2012), pp. 1067-1072
[50] N. Kaur, N. Choudhary, R.N. Goyal, S. Viladkar, I. Matai, P. Gopinath, S. Chockalingam, D. Kaur, J. Nanopart. Res., 15(2013), pp. 1-16
[51] X.A. Li, Z.L. Liu, A.Y. Zuo, Z.B. Yuan, J.P. Yang, K.L. Yao, J. Wuhan, Univ. Technol., 22(2007), pp. 446-449
[52] A. Rahmati, Ieee T. Plasma Sci., 43(2015), pp. 1969-1973
[53] S.H. Zhang, Y. He, M.X. Li, Y.Z. He, S. Kwon, J. Yoon, T. Cho, Thin Solid Films, 518(2010), pp. 5227-5232
[54] G. Soto, J.A. Diaz, W. de la Cruz, Mater. Lett., 57(2003), pp. 4130-4133
[55] T. Torndahl, M. Ottosson, J.O. Carlsson, J. Electrochem. Soc., 153(2006), pp. C146-C151
[56] F. Fendrych, L. Soukup, L. Jastrabik, M. Sicha, Z. Hubicka, D. Chvostova, A. Tarasenko, V. Studnicka, T. Wagner, Diam. Relat. Mater., 8(1999), pp. 1715-1719
[57] L. Soukup, M. Sicha, F. Fendrych, L. Jastrabik, Z. Hubicka, D. Chvostova, H. Sichova, V. Valvoda, A. Tarasenko, V. Studnicka, T. Wagner, M. Novak, Surf. Coat. Tech., 116(1999), pp. 321-326
[58] X.Q. Du, Q.F. Zhou, Z. Yan, Y.N. Zhou, X.J. Wu, Thin Solid Films, 625(2017), pp. 100-105
[59] A. vonRichthofen, R. Domnick, R. Cremer, Mikrochim. Acta, 125(1997), pp. 173-177
[60] G. Sahoo, S.R. Meher, M.K. Jain, Mater. Sci. Eng. B-Adv., 191(2015), pp. 7-14
[61] D. Wang, Y. Li, Chem. Commun., 47(2011), pp. 3604-3606
[62] R. Szczesny, E. Szlyk, M.A. Wisniewski, T.K.A.Hoang, D.H. Gregory, J. Mater. Chem. C, 4(2016), pp. 5031-5037
[63] T. Nakamura, N. Hiyoshi, H. Hayashi, T. Ebina, Mater. Lett., 139(2015), pp. 271-274
[64] X.Y. Fan, Z.G. Wu, G.A. Zhang, C. Li, B.S. Geng, H.J. Li, P.X. Yan, J. Alloy. Compd., 440(2007), pp. 254-258
[65] T. Nakamura, H. Hayashi, T. Hanaoka, T. Ebina, Inorg. Chem., 53(2014), pp. 710-715
[66] Y. Du, A.L. Ji, L.B. Ma, Y.Q. Wang, Z. Cao, J. Cryst. Growth, 280(2005), pp. 490-494
[67] J.R. Xiao, M. Qi, Y. Cheng, A.H. Jiang, Y.P. Zeng, J.F. Ma, RSC Adv., 6(2016), pp. 40895-40899
[68] J.R. Xiao, H.J. Shao, Y.W. Li, C.R. Zhou, Integr. Ferroelectr., 135(2012), pp. 8-16
[69] D. Fargue, C. R. Acad. Sci. Paris Sér. A-B(1973), pp. B471-B473
[70] M. Mikula, D. Buc, E. Pincik, Acta Phys. Slovaca, 51(2001), pp. 35-43
[71] A. Ji, C. Li, Y. Du, L. Ma, R. Song, R. Huang, Z. Cao, Nanotechnology, 16(2005), pp. 2092-2095
[72] U. Hahn, W. Weber, Phys. Rev. B, 53(1996), p. 12684
[73] Y.H. Zhao, J.Y. Zhao, T. Yang, J. Zhang, J.P. Yang, X.A. Li, Ceram. Int., 42(2016), pp. 4486-4490
[74] S. Cho, Curr. Appl. Phys., 12(2012), pp. S44-S47
[75] N. Takeuchi, Phys. Rev. B, 65(2002), p. 045204
[76] F. Gulo, A. Simon, J. Kohler, R.K. Kremer, Angew Chem. Int. Edit, 43(2004), pp. 2032-2034
[77] Z.F. Hou, Solid State Sci., 10(2008), pp. 1651-1657
[78] A. Rahmati, H. Bidadi, K. Ahmadi, F. Hadian, J. Coat Technol. Res., 8(2011), pp. 289-297
[79] X.Y. Cui, A. Soon, A.E. Phillips, R.K. Zheng, Z.W. Liu, B. Delley, S.P. Ringer, C. Stampfl, J. Magn. Magn. Mater., 324(2012), pp. 3138-3143
[80] X.Y. Fan, Z.G. Wu, H.J. Li, B.S. Geng, C. Li, P.X. Yan, J. Phys. D Appl. Phys., 40(2007), pp. 3430-3435
[81] A.L. Ji, N.P. Lu, L. Gao, W.B. Zhang, L.G. Liao, Z.X. Cao, J. Appl. Phys., 113(2013), p. 1985
[82] J.A. Rodriguez, M.G.Moreno-Armenta, N.Takeuchi, J. Alloy Compd., 576(2013), pp. 285-290
[83] H. Chen, X.A. Li, J. Zhao, Z. Wu, T. Yang, Y. Ma, W. Huang, K. Yao, Comput. Theor. Chem., 1027(2014), pp. 33-38
[84] L. Gao, A.L. Ji, W.B. Zhang, Z.X. Cao, J. Cryst. Growth, 321(2011), pp. 157-161
[85] H.Y. Chen, X.A. Li, J.Y. Zhao, Z.L. Wu, T. Yang, Y.W. Ma, W. Huang, K.L. Yao, Comput. Theor. Chem., 1018(2013), pp. 71-76
[86] X.Y. Fan, Z.J. Li, A. Meng, C. Li, Z.G. Wu, P.X. Yan, J. Mater. Sci. Technol., 31(2015), pp. 822-827
[87] X.A. Li, J.P. Yang, A.Y. Zuo, Z.B. Yuan, Z.L. Liu, K.L. Yao, J. Mater. Sci. Technol., 25(2009), pp. 233-236
[88] T. Ishikawa, M. Masuda, Y. Hayashi, J. Jpn I. Met., 63(1999), pp. 621-624
[89] Y. Du, R. Huang, R. Song, L.B. Ma, C. Liu, C.R. Li, Z.X. Cao, J. Mater. Res., 22(2007), pp. 3052-3057
[90] R. Cremer, M. Witthaut, D. Neuschutz, C. Trappe, M. Laurenzis, O. Winkler, H. Kurz, Mikrochim. Acta, 133(2000), pp. 299-302
[91] J.F. Pierson, Surf. Eng., 19(2003), pp. 67-69
[92] D.Y. Wang, N. Nakamine, Y. Hayashi, J. Vaccum Sci. Technol. A, 16(1998), pp. 2084-2092
[93] J.L. Choi, E.G. Gillan, Inorg. Chem., 44(2005), pp. 7385-7393
[94] N. Kanoun-Bouayed, M.B. Kanoun, S. Goumri-Said, Centr. Eur. J. Phys., 9(2011), pp. 205-212
[95] T. Maruyama, T. Morishita, Appl. Phys. Lett., 69(1996), pp. 890-891
[96] Z.Q. Liu, W.J. Wang, T.M. Wang, S. Chao, S.K. Zheng, Thin Solid Films, 325(1998), pp. 55-59
[97] J.F. Pierson, Vacuum, 66(2002), pp. 59-64
[98] S.O. Chwa, K.H. Kim, J. Mater. Sci. Lett., 17(1998), pp. 1835-1838
[99] M. Ghoohestani, M. Karimipour, Z. Javdani, Phys. Scripta, 89(2014), p. 240
[100] S.Y. Wang, J.H. Qiu, X.Q. Wang, N.Y. Yuan, J.N. Ding, W.H. Huang, Appl. Surf. Sci., 268(2013), pp. 387-390
[101] Z.G. Ji, Y.H. Zhang, Y. Yuan, C. Wang, Mater. Lett., 60(2006), pp. 3758-3760
[102] M. Birkett, C.N. Savory, A.N. Fioretti, P. Thompson, C.A. Muryn, A.D. Weerakkody, I.Z. Mitrovic, S. Hall, R. Treharne, V.R. Dhanak, D.O. Scanlon, A. Zakutayev, T.D. Veal, Phys. Rev. B, 95(2017), p. 115201
[103] A. Ji, D. Yun, L. Gao, Z. Cao, Physica Status Solidi, 207(2010), pp. 2769-2780
[104] C.M. Caskey, R.M. Richards, D.S. Ginley, A. Zakutayev, Mater. Horiz., 1(2014), pp. 424-430
[105] N. Yamada, K. Maruya, Y. Yamaguchi, X. Cao, Y. Ninomiya, Chem. Mater., 27(2015), pp. 8076-8083
[106] H.B. Wu, W. Chen, J. Am. Chem. Soc., 133(2011), pp. 15236-15239
[107] W. Zhu, X. Zhang, X.N. Fu, Y.N. Zhou, S.Y. Luo, X.J. Wu, Phys. Status Solidi A, 209(2012), pp. 1996-2001
[1] Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. 材料科学与技术, 2020, 44(0): 24-30.
[2] Tran Thang Q., Yoong Lee Jeremy Kong, Amutha Chinnappan, Loc Nguyen Huu, Tran T. Long, Dongxiao Ji, W.A.D.M. Jayathilaka, Kumar Vishnu Vijay, Seeram Ramakrishna. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables[J]. 材料科学与技术, 2020, 42(0): 46-53.
[3] Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[J]. 材料科学与技术, 2020, 46(0): 237-247.
[4] Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying[J]. 材料科学与技术, 2020, 43(0): 40-43.
[5] Yuan Zhong, Leifeng Liu, Ji Zou, Xiaodong Li, Daqing Cui, Zhijian Shen. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting[J]. 材料科学与技术, 2020, 42(0): 97-105.
[6] E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures[J]. 材料科学与技术, 2020, 42(0): 106-112.
[7] Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides[J]. 材料科学与技术, 2020, 37(0): 104-113.
[8] Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure[J]. 材料科学与技术, 2020, 44(0): 133-139.
[9] Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. 材料科学与技术, 2020, 44(0): 171-190.
[10] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[11] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[12] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[13] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[14] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[15] Chao Wang, Qiang Li, Weiming Zhang, Huiqing Fan. Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics[J]. 材料科学与技术, 2020, 45(0): 15-22.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.