Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 45 Issue (0): 117-124    DOI: 10.1016/j.jmst.2019.11.026
Research Article Current Issue | Archive | Adv Search |
Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases
S.Z. Wu, X.G. Qiao, M.Y. Zheng*()
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
Download:  HTML  PDF(4598KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Y-Ni alloys with different second phases were designed by changing Y/Ni atomic ratio from 1.5 to 0.5. The microstructure and mechanical properties of as-cast and as-extruded alloys were investigated. The as-cast Mg-Y-Ni alloy with Y/Ni ratio of 1.5 is composed of α-Mg and long period stacking ordered (LPSO) phase. When Y/Ni ratio is equal to 1, nanoscale lamellar γ' phase and eutectic Mg2Ni phase are formed in addition to LPSO phase. As Y/Ni ratio decreases further, the amount of eutectic Mg2Ni phase increases, while the amount of LPSO phase decreases. After extrusion, the LPSO and γ' phases are distributed along the extrusion direction, while eutectic Mg2Ni phase is broken and dispersed in the as-extruded alloys. LPSO phase and Mg2Ni phase in the alloys promote dynamic recrystallization (DRX) during extrusion, while γ' phase inhibits DRX. Consequently, the Mg96Y2Ni2 (at.%) alloy with LPSO phase and γ' phase as the main second phases shows the strongest basal texture after extrusion. The tensile yield strength of the as-extruded Mg-Y-Ni alloys increases first and then decreases with decreasing Y/Ni ratio. The as-extruded Mg96Y2Ni2 (at.%) alloy with Y/Ni = 1 exhibits excellent mechanical properties with tensile yield strength of 465 MPa, ultimate tensile strength of 510 MPa and elongation to failure of 7.2%, which is attributed to the synergistic effect of bulk LPSO phase and nanoscale γ' phase.

Key words:  Mg-Y-Ni alloys      LPSO      γ' Phase      Mg2Ni      Mechanical properties     
Received:  18 September 2019     
Corresponding Authors:  M.Y. Zheng     E-mail:  zhenghe@hit.edu.cn

Cite this article: 

S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases. J. Mater. Sci. Technol., 2020, 45(0): 117-124.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.11.026     OR     https://www.jmst.org/EN/Y2020/V45/I0/117

Alloys Composition
(at.%)
Composition
(wt%)
Y/Ni ratio
Mg95Y3Ni2 Mg95.1Y3.0Ni1.9 Mg-9.8Y-4.2Ni 1.5
Mg96Y2Ni2 Mg96.1Y2.0Ni1.9 Mg-6.7Y-4.3Ni 1
Mg97Y1Ni2 Mg96.9Y1.1Ni2.0 Mg-3.7Y-4.6Ni 0.5
Table 1  Chemical compositions of Mg-Y-Ni alloys.
Fig. 1.  XRD patterns of the as-cast Mg95Y3Ni2 alloy, Mg96Y2Ni2 alloy and Mg97Y1Ni2 alloy.
Fig. 2.  SEM images of the as-cast Mg-Y-Ni alloys with different Y/Ni atomic ratios: (a) Mg95Y3Ni2 alloy; (b) Mg96Y2Ni2 alloy; (c) Mg97Y1Ni2 alloy.
Fig. 3.  (a) TEM bright field image and selected area electron diffraction pattern and (b) corresponding composition of 18R-LPSO in Mg95Y3Ni2 alloy; (c) TEM bright field image and selected area electron diffraction pattern and (d) corresponding composition of Mg2Ni phase in Mg97Y1Ni2 alloy; (e) TEM bright field image, (f) HADDF-STEM image and (g) elemental mappings of γ' phase in Mg96Y2Ni2 alloy.
Alloys α-Mg LPSO Mg2Ni
Mg95Y3Ni2 40.6 59.4
Mg96Y2Ni2 47.8 50.3 1.9
Mg97Y1Ni2 65.9 30.0 4.1
Table 2  Volume fraction of the main phases in the as-cast Mg-Y-Ni alloys.
Alloys Mg Y Ni
Mg95Y3Ni2 98.4 ± 0.3 1.2 ± 0.3 0.4 ± 0.1
Mg96Y2Ni2 98.5 ± 0.2 0.8 ± 0.1 0.7 ± 0.3
Mg97Y1Ni2 99.1 ± 0.4 0.4 ± 0.1 0.5 ± 0.2
Table 3  EDS analysis of the matrix by SEM mapping in the as-cast Mg-Y-Ni alloys (at.%).
Fig. 4.  SEM images of (a) Mg95Y3Ni2 alloy, (b) Mg96Y2Ni2 alloy and (c) Mg97Y1Ni2 alloy after preheating at 420 °C for 15 min; (d) TEM bright field image and the HADDF-STEM images of (e) γ' and (f) 18R-LPSO in Mg96Y2Ni2 alloy after preheating.
Fig. 5.  SEM images of the as-extruded Mg-Y-Ni alloys with different Y/Ni atomic ratios along extrusion direction: (a) Mg95Y3Ni2 alloy; (b) Mg96Y2Ni2 alloy; (c) Mg97Y1Ni2 alloy.
Fig. 6.  (a-c) IPF images and (d-i) inverse pole ?gures of as-extruded alloys along extrusion direction: (a, d, g) Mg95Y3Ni2 alloy; (b, e, h) Mg96Y2Ni2 alloy; (c, f, i) Mg97Y1Ni2 alloy; (d-f) non-DRXed + DRXed regions and (g-i) DRXed regions.
Alloys α-Mg (%) Non-DRXed (%) DRXed (%) DRX ratio (%) Grain diameter (μm)
Mg95Y3Ni2 40.6 10.1 30.5 75.2 3.70 ± 1.36
Mg96Y2Ni2 47.8 23.1 24.7 51.7 0.67 ± 0.20
Mg97Y1Ni2 65.9 10.6 55.3 83.9 0.83 ± 0.46
Table 4  DRX ratio and DRXed grain size of as-extruded Mg-Y-Ni alloys.
Fig. 7.  SEM images observed from the position of (a-c) 10 mm and (d) 0 mm below the die-entrance of partially extruded alloys: (a) Mg95Y3Ni2 alloy; (b) Mg96Y2Ni2 alloy; (c, d) Mg97Y1Ni2 alloy.
Fig. 8.  (a) Tensile stress-strain curves of the as-extruded Mg-Y-Ni alloys, (b) mechanical properties of the as-extruded Mg-Y-Ni alloys with decreasing Y/Ni atomic ratio and (c) comparison of tensile properties of the as-extruded Mg-Y-Ni alloys and other high strength Mg alloys containing RE.
[1] Z. Yu, C. Xu, J. Meng, S. Kamado, Mater. Sci. Eng. A 703 (2017) 348-358.
[2] R.G. Li, J.F. Nie, G.J. Huang, Y.C. Xin, Q. Liu, Scr. Mater. 64 (2011) 950-953.
[3] T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61 (2009) 644-647.
[4] C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 547 (2012) 93-98.
[5] C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, S. Kamado, Sci. Rep. 7 (2017) 43391.
[6] S. Wu, J. Zhang, Z. Zhang, C. Xu, K. Nie, X. Niu, Mater. Sci. Eng. A 648 (2015) 134-139.
[7] T. Itoi, R. Ichikawa, M. Hirohashi, Mater. Sci.Forum 706-709 (2012) 1176-1180.
[8] D. Qin, J. Wang, Y. Chen, R. Lu, F. Pan, Mater. Sci. Eng. A 624 (2015) 9-13.
[9] H. Liu, F. Xue, J. Bai, J. Zhou , J. Mater. Eng. Perform. 22 (2013) 3500-3506.
[10] K. Xu, S. Liu, D. Huang, Y. Du , J. Mater. Sci. 53 (2018) 9243-9257.
[11] X. Yang, S. Wu, S. Lü, L. Hao, X. Fang , J. Alloys. Compd. 726 (2017) 276-283.
[12] S.M. Zhu, R. Lapovok, J.F. Nie, Y. Estrin, S.N. Mathaudhu, Mater. Sci. Eng. A 692 (2017) 35-42.
[13] S.Q. Luo, A.T. Tang, B. Jiang, H.W. Dong, W. Wei, F.S. Pan, Mater. Sci. Forum 898 (2017) 172-178.
[14] T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, Scr. Mater. 59 (2008) 1155-1158.
[15] H.S. Jiang, M.Y. Zheng, X.G. Qiao, K. Wu, Q.Y. Peng, S.H. Yang, Y.H. Yuan, J.H. Luo, Mater. Sci. Eng. A 684 (2017) 158-164.
[16] Y.M. Zhu, K. Oh-ishi, N.C. Wilson, K. Hono, A.J. Morton, J.F. Nie, Metall. Mater. Trans. A 47 (2015) 927-940.
[17] Y.M. Zhu, A.J. Morton, M. Weyland, J.F. Nie, Acta Mater. 58 (2010) 464-475.
[18] J.F. Nie, K. Oh-ishi, X. Gao, K. Hono, Acta Mater. 56 (2008) 6061-6076.
[19] Z. Wang, Q. Luo, S. Chen, K.-C. Chou, Q. Li, J. Alloys. Compd. 649 (2015) 1306-1314.
[20] M. Jiang, S. Zhang, Y. Bi, H. Li, Y. Ren, G. Qin, Intermetallics 57 (2015) 127-132.
[21] K. Yamashita, T. Itoi, M. Yamasaki, Y. Kawamura, E. Abe , J. Alloys. Compd. 788 (2019) 277-282.
[22] K. Kishida, K. Nagai, A. Matsumoto, A. Yasuhara, H. Inui, Acta Mater. 99 (2015) 228-239.
[23] D. Egusa, E. Abe, Acta Mater. 60 (2012) 166-178.
[24] Q. Dong, Z. Luo, H. Zhu, L. Wang, T. Ying, Z. Jin, D. Li, W. Ding, X. Zeng , J. Mater. Sci. Technol. 34 (2018) 1773-1780.
[25] J. Zhang, Y. Dou, G. Liu, Z. Guo, Comput. Mater. Sci. 79 (2013) 564-569.
[26] Q. Zhang, L. Fu, T.W. Fan, B.Y. Tang, L.M. Peng, W.J. Ding, Phys. B 416 (2013) 39-44.
[27] C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, H.L. Xie, Metall. Mater. Trans. A 49 (2018) 1931-1947.
[28] J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57 (2009) 2739-2747.
[29] K. Hagihara, N. Yokotani, Y. Umakoshi, Intermetallics 18 (2010) 267-276.
[30] C. Xu, T. Nakata, X. Qiao, M. Zheng, K. Wu, S. Kamado, Sci. Rep. 7 (2017) 40846.
[31] Y.B. Chun, J. Geng, N. Stanford, C.H.J. Davies, J.F. Nie, M.R. Barnett, Mater. Sci. Eng. A 528 (2011) 3653-3658.
[32] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646-3658.
[33] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Mater. Sci.Forum 654-656 (2010) 615-618.
[34] L.B. Tong, X.H. Li, H.J. Zhang, Mater. Sci. Eng. A 563 (2013) 177-183.
[35] T. Itoi, T. Suzuki, Y. Kawamura, M. Hirohashi, Mater. Trans. 51 (2010) 1536-1542.
[36] Z. Zhang, X. Liu, Z. Wang, Q. Le, W. Hu, L. Bao, J. Cui, Mater. Des. 88 (2015) 915-923.
[37] J. Wang, L. Wang, G. Zhu, B. Zhou, T. Ying, X. Zhang, Q. Huang, Y. Shen, X. Zeng, H. Jiang, Metall. Mater. Trans. A 49 (2018) 5382-5392.
[38] G. Garces, P. Perez, S. Cabeza, S. Kabra, W. Gan, P. Adeva, Metall. Mater. Trans. A 48 (2017) 5332-5343.
[39] W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1 (2013) 61-66.
[40] Z.T. Li, X.G. Qiao, C. Xu, S. Kamado, M.Y. Zheng, A.A. Luo , J. Alloys. Compd. 792 (2019) 130-141.
[1] Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure[J]. 材料科学与技术, 2020, 42(0): 130-142.
[2] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[3] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[4] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[5] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[6] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[7] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[8] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[9] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[10] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[11] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[12] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[13] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[14] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[15] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.