Please wait a minute...
J Mater Sci Technol  1999, Vol. 15 Issue (06): 531-535    DOI:
Research Articles Current Issue | Archive | Adv Search |
Structure of the Intermetallic Compound Ni3Al Synthesized under Compression of the Powder Mixture of Pure Elements Part I: Phase Composition and Microstructure of Main Phase
M.V.Fedorischeva, V.E.Ovcharenko, O.B.Perevalova, E.V.Kozlov
Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
Download:  HTML  PDF(411KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It was shown by TEM and X-ray analysis that there are four types of grains of the main Ni3Al phase in the structure of the intermetallic obtained by the self-propagation high temperature method (SHS). Every type of grains has its own domain and dislocation structure. There are mono- and polydomains with and without dislocations. The grains of the main phase of mono- and polydomains without dislocations and polydomains with dislocations were formed by diffusion in the solid phase. In these conditions NiAl3 phase is located on the grain boundary of the main phase. The Ni2Al3 phase is located at the triple joints of the main phase.
Key words:       
Received:  19 April 1999     
Corresponding Authors:  V.E.Ovcharenko     E-mail:

Cite this article: 

M.V.Fedorischeva, V.E.Ovcharenko, O.B.Perevalova, E.V.Kozlov. Structure of the Intermetallic Compound Ni3Al Synthesized under Compression of the Powder Mixture of Pure Elements Part I: Phase Composition and Microstructure of Main Phase. J Mater Sci Technol, 1999, 15(06): 531-535.

URL:     OR

[1] A.G.Merjanov and O.E.Kasherininov: VINTI,1987,115. (In Russian)
[2] V.I.Itin and Ya.R Naiborodenko: High-temperatureSynthesis of Intermetallic Compounds, Tomsk,1989,214. (In Russian)
[3] Yu.S.Naiborodenko, N.G.Kasatskii and O.A.Shoda:Izv. VUZov. Physics, 1996, (7), 31. (In Russian)
[4] Yu.S.Naiborodenko and V.M.Filatov: Phy. Goreniyai Vzriva, 1995, 31, 20. (In Russian)
[5] M.A.Korchagin, B.B. Aleksandrov and B.A.Neronov:AN SSSR, Chem. Sci., 1979, 14(6), 104. (In Russian)
[6] O.V.Lapshin and B.E.Ovcharenko: Phy. Goreniya iVzriva, 1996, 32(3), 68. (In Russian)
[7] C.Nishimura and C.T.Liu: Acta Metall. Mater, 1993,41(1), 113.
[8] J.P.Lebrat and A.Varma: Combust Sci. and Technol,1992, 88, 211.
[9] S.Miura, T Ohashi and Y.Mishima: Intermetallics,1997, 5, 45.
[10] S.C.Deevi and V.R.Sikka: Intermetallics, 1997, 5, 17.
[11] V.E.Ovcharenko, V.E.Panin, G.A.Pribitkov andA.A.Golubev: Patent Russia No. 93028489. (In Rus-sian)
[12] L.I.Mirkin: X-ray Analysis, Moscow, 1961, 863. (InRussian)
[13] L.M.Ytevskii: Diffraction Electron Microscope inSolid, Moscow, 1973, 583. (In Russian).
[14] P.Hirsh, A.Hovi, R.Nikolson, D.Peshili and M.Yelan:Electron Microscope of Thin Crystals, Moscow, 1968,574. (In Russian)
[15] K.S.Chernyavskii: Stereologe in Solid, Moscow, 1977,279. (In Russian)
[16] J.J.Solorzano and J.C.Weatherly: Mater. Sci. andEng., 1986, 81, 101.
[17] H.Assadi, M.Barth, A.L.Greer and D.M.Herlach: ActaMetall., 1998, 46(2), 491.
[18] L.E.Popov, N.A.Koneva and I.V.Tereshko: Deforma-tion Hardening of Ordered Alloys, Moscow, 1979, 255.(In Russian)
[19] N.A.Koneva, O.B.Perevalova and E.V.Kozlov: Proc.of the 9th Int. Conf. on the Strength of Metals andAlloys, Haifa, Israel, 14-19 July, 1991. Frend Publish-ing Company Ltd, London, England, 1991, 295.
[20] G.V.Samsonov and I.M.Vinnitskii: Higb MeltingCompounds, Moscow, Metallurgy, 1976, 558. (In Rus-sian)
[21] Dg.Eshli: Elements, Moscow, 1993, 255. (In Russian)
[22] K.Dg Smitlz: Metals, Moscow, Metallurgy, 1980, 446.(In Russian)
[1] Zhao-Qi Zhang, Rong-Chang Zeng, Cun-Guo Lin, Li Wang, Xiao-Bo Chen, Dong-Chu Chen. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31[J]. 材料科学与技术, 2020, 41(0): 43-55.
[2] Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis[J]. 材料科学与技术, 2020, 41(0): 56-67.
[3] Jiajie Li, Xiangyun Huang, Liangliang Zeng, Bo Ouyang, Xiaoqiang Yu, Munan Yang, Bin Yang, Rawat Rajdeep Singh, Zhenchen Zhong. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films[J]. 材料科学与技术, 2020, 41(0): 81-87.
[4] Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling[J]. 材料科学与技术, 2020, 41(0): 98-104.
[5] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[6] Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants[J]. 材料科学与技术, 2020, 41(0): 117-126.
[7] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[8] Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium[J]. 材料科学与技术, 2020, 41(0): 139-148.
[9] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[10] Edson Cezar Grzebielucka, João Frederico Haas Leandro Monteiro, Eder Carlos Ferreira de Souza, Christiane Philippini Ferreira Borges, André Vitor Chaves de Andrade, Eloísa Cordoncillo, Héctor Beltrán-Mir, Sandra Regina Masetto Antunes. Improvement in varistor properties of CaCu3Ti4O12 ceramics by chromium addition[J]. 材料科学与技术, 2020, 41(0): 12-20.
[11] Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material[J]. 材料科学与技术, 2020, 41(0): 159-167.
[12] Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. 材料科学与技术, 2020, 41(0): 191-198.
[13] Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation[J]. 材料科学与技术, 2020, 41(0): 209-218.
[14] Yang Huijun, Liu Yong, Zhang Teng, Wang Hengpeng, Tang Bin, Qiao Junwei. Dry Sliding Tribological Properties of a Dendrite-reinforced Zr-based Bulk Metallic Glass Matrix Composite[J]. J. Mater. Sci. Technol., 2014, 30(6): 576-583.
[15] Bin Gan, Jeffrey M. Wheeler, Zhongnan Bi, Lin Liu, Jun Zhang, Hengzhi Fu. Superb cryogenic strength of equiatomic CrCoNi derived from gradient hierarchical microstructure[J]. 材料科学与技术, 2019, 35(6): 957-961.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.