Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 1-6    DOI: 10.1016/j.jmst.2020.01.049
Research Article Current Issue | Archive | Adv Search |
Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment
Li Zhanga,c, Zhong Xua, Jia Hana, Lei Liua, Cong Yea,*(), Yi Zhoua, Wen Xionga, Yanxin Liua, Gang Heb,*()
a Faculty of Physics and Electronic Science, Hubei University, Hubei Key Laboratory of Ferro-& Piezoelectric Materials and Devices, Hubei Key Laboratory of Applied Mathematics, Wuhan, 430062, China
b School of Physics and Materials Science, Radiation Detection Materials & Device Lab, Anhui University, Hefei, 230039, China
c School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
Download:  HTML  PDF(2441KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the demand of flat panel display development, utilizing the non-volatile memory devices based on indium-gallium-zinc-oxide (IGZO) film may be integrated with IGZO thin film transistors (TFTs) to accomplish system-on-panel applications. In this work, 1 × 1 μm2 via hole structure IGZO based memory device was fabricated and the resistive switching (RS) behavior was investigated. By inserting a nitrogen doping layer IGZO:N by plasma treatment in Pt/IGZO/TiN device, highly improved RS performance including lower forming voltage, remarkable uniformity, large memory window of 102, retention property of 104 s at 125 °C, excellent pulse endurance of 107 cycles were achieved. The X-ray photoelectron spectroscopy analysis indicates that plasma doping method can evenly dope nitrogen and induce more non-lattice oxygen in the IGZO film. It is deduced that the N atoms of the inserting layer can influence the random formation of oxygen vacancy type conducting filaments, which results in more stable and uniform performance.

Key words:  Memory device      Resistive switching      Plasma treatment      Indium-gallium-zinc-oxide      Memristor     
Received:  08 November 2019     
Corresponding Authors:  Cong Ye,Gang He     E-mail:  yecong@issp.ac.cn;ganghe01@issp.ac.cn

Cite this article: 

Li Zhang, Zhong Xu, Jia Han, Lei Liu, Cong Ye, Yi Zhou, Wen Xiong, Yanxin Liu, Gang He. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment. J. Mater. Sci. Technol., 2020, 49(0): 1-6.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.01.049     OR     https://www.jmst.org/EN/Y2020/V49/I0/1

Fig. 1.  3D topographic images of the film surface of (a) IGZO film and (b) IGZO:N film.
Fig. 2.  XPS spectra of (a) In 3d, (b) Ga 3d and (c) Zn 2p peaks for two samples, (d) N 1s peak for IGZO:N film, (e) O1s peak for two samples.
Fig. 3.  (a) Semilog image of forming process and (b) forming voltage variations for two devices. Typical I-V curves with 100 cycles for (c) Pt/IGZO/TiN and (d) Pt/IGZO/IGZO:N/TiN device.
Fig. 4.  (a) The distribution of HRS/LRS (b) distributions of Vset for two device. Device-to-device HRS and LRS variations of (c) Pt/IGZO/TiN device, (d) Pt/IGZO/IGZO:N/TiN device.
Fig. 5.  Pulse endurance characteristics of (a) Pt/IGZO/TiN and (b) Pt/IGZO/IGZO:N/TiN device, the inset plots the pulse parameters. Retention characteristics of (c) Pt/IGZO/TiN and (d) Pt/IGZO/IGZO:N/TiN device at 125 ℃.
Fig. 6.  Current conduction mechanism of the (a) Pt/IGZO/TiN and (b) Pt/IGZO/IGZO:N/TiN device. Figures (c)-(d) and (e)-(f) exhibit the coincidence of current fitting analysis for both devices, respectively.
Fig. 7.  A schematic showing the RS mechanism in set process for both devices.
[1] X. Chen, W. Hu, S. Wu, D. Bao, J. Alloys. Compd. 615 (2014) 566-568.
doi: 10.1016/j.jallcom.2014.06.200
[2] Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Nature Mater. 16 (2016) 101-108.
[3] L. Zou, W. Hu, W. Xie, D. Bao, J. Alloys. Compd. 693 (2017) 1180-1184.
[4] X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, X. Liu, Adv. Funct. Mater. 28 (2017), 1705320.
doi: 10.1002/adfm.v28.1
[5] X.F. Chen, G. He, M. Liu, J.W. Zhang, B. Deng, P.H. Wang, M. Zhang, J.G. Lv, Z.Q. Sun, J. Alloys. Compd. 615 (2014) 636-642.
[6] A. Abliz, Q. Gao, D. Wan, X. Liu, L. Xu, C. Liu, C. Jiang, X. Li, H. Chen, T. Guo, J. Li, L. Liao, ACS Appl. Mater. Interfaces 9 (2017) 10798-10804.
doi: 10.1021/acsami.6b15275 pmid: 28266830
[7] X. Liu, X. Liu, J. Wang, C. Liao, X. Xiao, S. Guo, C. Jiang, Z. Fan, T. Wang, X. Chen, W. Lu, W. Hu, L. Liao, Adv. Mater. 26 (2014) 7399-7404.
doi: 10.1002/adma.201401732 pmid: 25236580
[8] M.S. Kim, Y.H. Hwang, S. Kim, Z. Guo, D.I. Moon, J.M. Choi, M.L. Seol, B.S. Bae, Y.K. Choi, Appl. Phys. Lett. 101 (2012), 243503.
[9] W. Hu, L. Zou, X. Chen, N. Qin, S. Li, D. Bao, ACS Appl. Mater. Interfaces 6 (2014) 5012-5017.
doi: 10.1021/am500048y pmid: 24635893
[10] S. Banga, M.H. Kima, T.H. Kima, D.K. Leea, S. Kimb, S. Choc, B.G. Parka, Solid. Electron. 150 (2018) 60-65.
[11] Q. Wu, C. Lu, H. Wang, J. Cao, G. Yang, J. Wang, Y. Gong, X. Shi, X. Chuai, N. Lu, D. Geng, L. Li, M. Liu, IEEE Electron Device Lett. 40 (2018) 24-27.
[12] Q. Li, Y. Li, L. Gao, F. Ma, Z. Song, K. Xu, RSC Adv. 6 (2016) 42347.
[13] Y.S. Fan, P.T. Liu, C.H. Hsu, Thin Solid Films 549 (2013) 54-58.
doi: 10.1016/j.tsf.2013.09.033
[14] Z. Fang, X.P. Wang, J. Sohn, B.B. Weng, Z.P. Zhang, Z.X. Chen, Y.Z. Tang, G.Q. Lo, J. Provine, S.S. Wong H.S.P. Wong, D.L. Kwong, IEEE Electron Device Lett. 35 (2014) 912-914.
doi: 10.1109/LED.2014.2334311
[15] H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, H. Sun, X. Yang, S. Long, S. Liu, M. Liu, Semicond. Sci. Technol. 27 (2012), 125008.
doi: 10.1088/0268-1242/27/12/125008
[16] Y. Li, Y. Wang, S. Liu, S. Long, H. Lv, Q. Liu, Q. Wang, S. Zhang, M. Liu, J. Korean Phys. Soc. 58 (2011) 407-410.
doi: 10.3938/jkps.58.407
[17] S.H. Misha, N. Tamanna, J. Woo, S. Lee, J. Song, J. Park, S. Lim, J. Park, H. Hwang, ECS Solid State Lett. 4 (2015) 25-28.
[18] C. Ye, J.J. Wu, C.H. Pan, T.M. Tsai, K.C. Chang, H. Wu, N. Deng, H. Qian, RSC Adv. 7 (2017) 11585.
doi: 10.1039/C7RA01104K
[19] H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, H. Sun, X. Yang, S. Long, S. Liu, M. Liu, Semicond. Sci. Technol. 27 (2012), 125008.
doi: 10.1088/0268-1242/27/12/125008
[20] C. Ye, C. Zhan, T.M. Tsai, C.K. Chang, M.C. Chen, T.C. Chang, T.F. Deng, H. Wang, Appl. Phys. Express 7 (2014), 034101.
[21] D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, J. Appl. Phys. 104 (2008), 123716.
doi: 10.1063/1.3043879
[22] D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Jeon, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Kim, Nat. Nanotechnol. 5 (2010) 148-153.
doi: 10.1038/nnano.2009.456 pmid: 20081847
[23] M. Yi, Y. Cao, H. Ling, Z. Du, L. Wang, T. Yang, Q. Fan, L. Xie, W. Huang, Nanotechnology 2 (2014), 185202.
[24] Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, G. Wang, Nat. Commun. 9 (2018) 1425.
doi: 10.1038/s41467-018-03858-w pmid: 29651037
[25] Y. Lai, Z. Zeng, C. Liao, S. Chen, J. Yu, Q. Zheng, P. Lin, Appl. Phys. Lett. 109 (2016), 063501.
[26] P.H. Chen, T.C. Chang, K.C. Chang, T.M. Tsai, C.H. Pan, M.C. Chen, Y.T. Su, C.Y. Lin, Y.T. Tseng, H.C. Huang, H. Wu, N. Deng, H. Qian, S.M. Sze, ACS Appl. Mater. Interfaces 9 (2017) 3149-3155.
doi: 10.1021/acsami.6b14282 pmid: 28072511
[27] H.D. Kim, M.J. Yun, S. Kim, J. Alloys. Compd. 653 (2015) 534-538.
[28] X. Wei, H. Huang, C. Ye, W. Wei, H. Zhou, Y. Chen, R. Zhang, L. Zhang, Q. Xia, J. Alloys. Compd. 775 (2019) 1301-1306.
[29] C.H. Hsu, Y.S. Fan, P.T. Liu, Appl. Phys. Lett. 102 (2013), 062905.
[30] M. Lukomska A.J. Rybarczyk-Pirek, M. Jablonski, M. Palusiak, Phys. Chem. Chem. Phys. 17 (2015) 16375.
pmid: 26051488
[31] T. Privaliv, B. Akermark, L. Sun, Chem. Eur. J. 17 (2011) 8313-8317.
doi: 10.1002/chem.201100901 pmid: 21656591
[1] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. 材料科学与技术, 2020, 48(0): 1-8.
[2] Shijing Wei, Yabin Hao, Zhe Ying, Chuan Xu, Qinwei Wei, Sen Xue, Hui-Ming Cheng, Wencai Ren, Lai-Peng Ma, You Zeng. Transfer-free CVD graphene for highly sensitive glucose sensors[J]. 材料科学与技术, 2020, 37(0): 71-76.
[3] Cong Ye, Jiaji Wu, Gang He, Jieqiong Zhang, Tengfei Deng, Pin He, Hao Wang. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review[J]. J. Mater. Sci. Technol., 2016, 32(1): 1-11.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.