Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 35-41    DOI: 10.1016/j.jmst.2020.02.001
Research Article Current Issue | Archive | Adv Search |
Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃
Yanke Liua, Yulong Caia, Chenggang Tianb, Guoliang Zhangb, Guoming Hanc, Shihua Fua,d, Chuanyong Cuib,*(), Qingchuan Zhanga,*()
a CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230027, China
b Superalloy Division, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
c AVIC Commercial Aircraft Engine Co., Ltd, Shanghai, 201108, China
d Hainan University, Haikou, 570228, China
Download:  HTML  PDF(3956KB) 
Export:  BibTeX | EndNote (RIS)      

The macroscopically localized deformation behaviors of Ni-Co-based superalloys with different γ′ precipitate content were investigated at 500 °C and 1 × 10-4 s-1 via an in situ method namely, digital image correlation (DIC). The DIC results showed that the serrated flow of the stress-strain curves was accompanied by localized deformation of the specimens. The fracture morphology was characterized mainly by transgranular fracture with numerous dimples in the low γ′ content alloy, and intergranular fracture with large fracture section in the high γ′ content alloy. The Portevin-Le Chatelier (PLC) effect occurred in the investigated Ni-Co-based superalloys. Furthermore, the localized deformation of the high γ′ content alloy was more severe than that of the low γ′ content alloy, and the band width was slightly larger. Moreover, for the first-time ever, a special propagation feature, namely ±60° zigzag bands characterized by head-to-tail connections, was observed in the high γ′ content alloy.

Key words:  γ′ Precipitate      Ni-Co-based superalloy      Dynamic strain aging      Portevin-Le Chatelier effect      Digital image correlation     
Received:  09 November 2018     
Corresponding Authors:  Chuanyong Cui,Qingchuan Zhang     E-mail:;

Cite this article: 

Yanke Liu, Yulong Cai, Chenggang Tian, Guoliang Zhang, Guoming Han, Shihua Fu, Chuanyong Cui, Qingchuan Zhang. Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃. J. Mater. Sci. Technol., 2020, 49(0): 35-41.

URL:     OR

Fig. 1.  Experimental setup of tensile test and DIC observation systems, which consist of a tensile machine (RGM-4050), a heating furnace, a temperature controlling box, a camera with a standard 50 mm lens, a light source, a trigger collector, and a high-performance computer for acquiring images and performing post-processing procedures.
Fig. 2.  Optical micrographs showing the grain sizes of the microstructures comprising the different γ′ content alloys: (a) 5% and (b) 30 %. The micrographs were captured by Vitt: DM1000-M.
Fig. 3.  (a) and (b) TEM images revealing the γ′ precipitate morphologies of the 5% and 30 % γ′ alloys; (c) chemical components of the matrix; (d) mean radius and area fraction of the γ′ precipitates.
Fig. 4.  Sketches of the macroscopic fracture observed for the (a) 5% and (d) 30 % γ′ alloys and the fractographs of the (b, c) 5% and (e, f) 30 % γ′ alloys.
Fig. 5.  Engineering stress-strain curves of the 5% and 30 % γ′ alloys. The insets show the distributions of the serration amplitude, which indicate the peak-shaped distribution.
Fig. 6.  Selected serrations for DIC observations at strains of: (a) ~0.1, (b) ~0.2, (c) ~0.4.
Fig. 7.  DIC strain maps of 5% and 30 % γ′ alloys at different stages of loading: (a), (c), and (e) correspond to the 5% γ′ content alloy at 0.1, 0.2, and 0.4, respectively; (b) and (d) correspond to the 30 % γ′ content alloy at 0.1 and 0.2, respectively; (f) shows the corresponding strain distribution. The three red points (P1, P2, P3) in (a) and (b) are used in the analysis of the local strain rate evolutions shown in Fig. 9.
Fig. 8.  Variation in the PLC band width and the band inclination with loading procedure and γ′ content. A value of ~34 pixel/mm was obtained for the correspondence between the actual dimension and the acquired image.
Fig. 9.  Evolutions of the local strain rate corresponding to three selected points (as shown in Fig. 7(a-b)) of different γ′ content alloys: (a) 5% γ′ alloy, (b) 30 % γ′ alloy. For clarity, these curves are separated vertically by strain rate intervals of 1.2 × 10-2 s-1.
Fig. 10.  DIC strain maps of different γ′ content alloys at a strain of ~0.15 in our previous study [34]: (a) 5% γ′ alloy, (b) 30 % γ′ alloy.
Fig. 11.  Special propagation of PLC bands in the 30 % γ′ alloy: the (a) strain maps obtained for the tensile direction and (b) strain evolution corresponding to the center lines.
[1] C.Y. Cui, Y.F. Gu, Y. Yuan, T. Osada, H. Harada, Mater. Sci. Eng. A 528 (2011) 5465-5469.
doi: 10.1016/j.msea.2011.03.085
[2] C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada, Metall. Mater. Trans. A 40 (2009) 282-291.
doi: 10.1007/s11661-008-9746-4
[3] Y.F. Gu, C. Cui, D. Ping, H. Harada, T. Fukuda, J. Fujioka, Mater. Sci. Eng. A 510-511 (2009) 250-255.
[4] Y. Gu, H. Harada, C. Cui, D. Ping, A. Sato, J. Fujioka, Scr. Mater. 55 (2006) 815-818.
doi: 10.1016/j.scriptamat.2006.07.008
[5] Y. Yuan, Y.F. Gu, Z.H. Zhong, T. Osada, C.Y. Cui, T. Tetsui, T. Yokokawa, H. Harada, J. Microsc. 248 (2012) 34-41.
pmid: 22834947
[6] Y. Cai, C. Tian, S. Fu, G. Han, C. Cui, Q. Zhang, Mater. Sci. Eng. A 638 (2015) 314-321.
doi: 10.1016/j.msea.2015.04.033
[7] C.Y. Cui, Y.F. Gu, Y. Yuan, H. Harada, Scr. Mater. 64 (2011) 502-505.
doi: 10.1016/j.scriptamat.2010.11.025
[8] Y.J. Xu, D.Q. Qi, K. Du, C.Y. Cui, H.Q. Ye, Scr. Mater. 87 (2014) 37-40.
doi: 10.1016/j.scriptamat.2014.05.012
[9] Q. Zhang, Z. Jiang, H. Jiang, Z. Chen, X. Wu, Int. J. Plast. 21 (2005) 2150-2173.
doi: 10.1016/j.ijplas.2005.03.017
[10] J. Min, L.G. Hector, J. Lin, J.T. Carter, A.K. Sachdev, Int. J. Plast. 57 (2014) 52-76.
doi: 10.1016/j.ijplas.2014.02.004
[11] H. Ait-Amokhtar, C. Fressengeas, Acta Mater. 58 (2010) 1342-1349.
doi: 10.1016/j.actamat.2009.10.038
[12] A. Benallal, T. Berstad, T. Børvik, O.S. Hopperstad, I. Koutiri R. Nogueira de Codes, Int. J. Plast. 24 (2008) 1916-1945.
doi: 10.1016/j.ijplas.2008.03.008
[13] Y. Cai, Q. Zhang, S. Yang, S. Fu, Y. Wang, Exp. Mech. 56 (2016) 1243-1255.
doi: 10.1007/s11340-016-0138-1
[14] Y.L. Cai, S.L. Yang, Y.H. Wang, S.H. Fu, Q.C. Zhang, Mater. Sci. Eng. A 664 (2016) 155-164.
doi: 10.1016/j.msea.2016.04.003
[15] A.H. Cottrell, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 44, 1953, pp. 829-832.
[16] P.G. McCormick, Acta Metall. 36 (1988) 3061-3067.
doi: 10.1016/0001-6160(88)90043-0
[17] F. Springer, A. Nortmann, C. Schwink, Physica Status Solidi A Appl. Res. 170 (1998) 63-81.
doi: 10.1002/(ISSN)1521-396X
[18] S. Fu, T. Cheng, Q. Zhang, Q. Hu, P. Cao, Acta Mater. 60 (2012) 6650-6656.
doi: 10.1016/j.actamat.2012.08.035
[19] K. Chihab, C. Fressengeas, Mater. Sci. Eng. A 356 (2003) 102-107.
doi: 10.1016/S0921-5093(03)00141-2
[20] L.P. Kubin, Y. Estrin, Acta Metall Mater. 38 (1990) 697-708.
doi: 10.1016/0956-7151(90)90021-8
[21] E. Nembach, G. Neite, Prog. Mater. Sci. 29 (1985) 177-319.
doi: 10.1016/0079-6425(85)90001-5
[22] A.J. Huis in’t Veld, G. Boom, P.M. Bronsveld, J.Th.M. De Hosson, Scr. Metall. Mater. 19 (1985) 1123-1128.
[23] C. Tian, G. Han, C. Cui, X. Sun, Mater. Des. 64 (2014) 316-353.
doi: 10.1016/j.matdes.2014.08.007
[24] B.D. Fu, K. Du, G.M. Han, C.Y. Cui, J.X. Zhang, Mater. Lett. 152 (2015) 272-275.
doi: 10.1016/j.matlet.2015.03.142
[25] X. Xu, Y. Su, Y. Cai, T. Cheng, Q. Zhang, Exp. Mech. 55 (2015) 1575-1590.
doi: 10.1007/s11340-015-0054-9
[26] J.S. Lyons, J. Liu, M.A. Sutton, Exp. Mech. 36 (1996) 64-70.
doi: 10.1007/BF02328699
[27] B.M.B. Grant, H.J. Stone, P.J. Withers, M. Preuss, J. Strain Anal. Ai Edam 44 (2009) 263-271.
[28] B. Pan, D.F. Wu, Z.Y. Wang, Y. Xia, Meas. Sci. Technol. 22 (2011), 015701.
doi: 10.1088/0957-0233/22/1/015701
[29] G.J. Pataky, H. Sehitoglu, H.J. Maier, J. Nucl. Mater. 443 (2013) 484-490.
doi: 10.1016/j.jnucmat.2013.08.009
[30] B. Swaminathan, W. Abuzaid, H. Sehitoglu, J. Lambros, Int. J. Plast. 64 (2015) 177-192.
doi: 10.1016/j.ijplas.2014.09.001
[31] P. Leplay, O. Lafforgue, F. Hild, J. Am. Ceram. Soc. 98 (2015) 2240-2247.
doi: 10.1111/jace.13601
[32] Y. Gao, T. Cheng, Y. Su, X.H. Xu, Y. Zhang, Q.C. Zhang, Opt. Lasers Eng. 65 (2015) 73-80.
doi: 10.1016/j.optlaseng.2014.05.013
[33] Y. Yuan, Y.F. Gu, Z.H. Zhong, T. Yokokawa, H. Harada, Mater. Sci. Eng. A 556 (2012) 595-600.
doi: 10.1016/j.msea.2012.07.032
[34] Y.L. Cai, C.G. Tian, G.L. Zhang, G.M. Han, S.L. Yang, S.H. Fu, C.Y. Cui, Q.C. Zhang, J. Alloys Compd. 690 (2017) 707-715.
doi: 10.1016/j.jallcom.2016.08.194
[35] C.G. Tian, G.M. Han, C.Y. Cui, X.F. Sun, Mater. Des. 88 (2015) 123-131.
doi: 10.1016/j.matdes.2015.08.114
[36] Y. Cai, Q. Zhang, S. Yang, S. Fu, Y. Wang, Exp. Mech. 56 (2016) 1243-1255.
doi: 10.1007/s11340-016-0138-1
[1] Hui Xu, Xuebing Liu, Di Zhang, Xinfang Zhang. Minimizing serrated flow in Al-Mg alloys by electroplasticity[J]. 材料科学与技术, 2019, 35(6): 1108-1112.
[2] Xinfeng Li, Jin Zhang, Eiji Akiyama, Qinqin Fu, Qizhen Li. Hydrogen embrittlement behavior of Inconel 718 alloy at room temperature[J]. 材料科学与技术, 2019, 35(4): 499-502.
[3] Xinguang Wang, Guoming Han, Chuanyong Cui, Shuai Guan, Jinguo Li, Guichen Hou, Yizhou Zhou, Xiaofeng Sun. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy[J]. 材料科学与技术, 2019, 35(1): 84-87.
[4] Xiangchen Meng, Bei Liu, Lan Luo, Yan Ding, Xi-Xin Rao, Bin Hu, Yong Liu, Jian Lu. The Portevin-Le Châtelier effect of gradient nanostructured 5182 aluminum alloy by surface mechanical attrition treatment[J]. 材料科学与技术, 2018, 34(12): 2307-2315.
[5] Cai Yulong, Yang Suli, Fu Shihua, Zhang Di, Zhang Qingchuan. Investigation of Portevin-Le Chatelier Band Strain and Elastic Shrinkage in Al-Based Alloys Associated with Mg Contents[J]. 材料科学与技术, 2017, 33(6): 580-586.
[6] Chenggang Tian, Chuanyong Cui, Ling Xu, Yuefeng Gu, Xiaofeng Sun. Dynamic Strain Aging in a Newly Developed Ni-Co-Base Superalloy with Low Stacking Fault Energy[J]. J. Mater. Sci. Technol., 2013, 29(9): 873-878.
[7] Zhongjia CHEN, Qingchuan ZHANG, Zhenyu JIANG, Huifeng JIANG, Xiaoping WU. A Macroscopic Model for the Portevin-Le Chatelier Effect[J]. J. Mater. Sci. Technol., 2004, 20(05): 535-539.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.