Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 144-156    DOI: 10.1016/j.jmst.2020.02.025
Research Article Current Issue | Archive | Adv Search |
Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution
Zhiliang Jina,b,c,*(), Lijun Zhanga,b,c,*()
a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
b Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
c Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
Download:  HTML  PDF(6053KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-Cu bimetallic nanoparticles were successfully anchorred on the surface of g-C3N4 nanosheets by a simple heat treatment process which was applied to the photocatalytic hydrogen evolution reaction. In-situ introduction of Ni-Cu could significantly improve the photocatalytic hydrogen evolution performance compared with pure g-C3N4 in the system sensitized by eosin Y under a visible irradiation condition. The hydrogen production activity of the composite reached 104.4 μmol (2088.28 μmol g-1 h-1) after using the Ni—Cu double promoter strategy, which was 24.3 times higher than g-C3N4. The excellent electrical conductivity of the bimetallic Ni-Cu and the close interfacial contact between Ni—Cu and g-C3N4 played an important role for increasing the charge transfer rate. They were also the reasons of more efficient charge separation, which ultimately led to a significant promotion on the photocatalytic hydrogen production reaction. Ni-Cu/g-C3N4 coupling with a close Schottky interface between metal and semiconductor which enhanced H2-evolution performance and TEOA oxidation kinetics. This work provided a new way to load Ni—Cu bimetallic nanoparticles in situ onto g-C3N4 and a reference on relative semiconductor materials.

Key words:  Bimetallic      Ni-Cu      g-C3N4      Charge separation      Hydrogen evolution     
Received:  16 November 2019     
Corresponding Authors:  Zhiliang Jin,Lijun Zhang     E-mail:  zl-jin@nun.edu.cn;1245006161@qq.com

Cite this article: 

Zhiliang Jin, Lijun Zhang. Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution. J. Mater. Sci. Technol., 2020, 49(0): 144-156.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.025     OR     https://www.jmst.org/EN/Y2020/V49/I0/144

Fig. 1.  Synthesis procedure for Ni-Cu/g-C3N4.
Fig. 2.  XRD patterns (a, b, c) and FT-IR (d) of bare g-C3N4 (CN), CNN-n (n = 5, 10, 15, 20), CNC and CNNC-x (x = 5, 10, 15, 20) samples.
Fig. 3.  XPS analysis of CNNC-15 composite: (a) XPS survey spectrum of CNNC-15 and pure g-C3N4; High-resolution XPS spectrum of C 1s (b), N 1s (c), O 1s (d), Ni 2p (e) and Cu 2p (f) that belongs to CNNC-15 and pure g-C3N4, respectively.
Fig. 4.  SEM pictures of g-C3N4 (a), CNC (b), CNN-15 (c) and CNNC-15 (d).
Fig. 5.  TEM image of g-C3N4 (a), CNC (b), CNN-15 (c) and CNNC-15 (d); HRTEM images of CNNC-15(e). EDX of CNNC-15 (f).
Samples SBET (m2/g) Pore volume (cm3/g) Average pore size (nm)
g-C3N4 5 0.025 21
CNC 40 0.002 18
CNN-15 42 0.219 19
CNNC-15 51 0.233 19
Table 1  SBET, pore volume and average pore size comparisons results for different catalysts.
Fig. 6.  N2 adsorption-desorption isotherms and corresponding pore-size distribution curves (inset) of the CN (a), CNC (b), CNN-15 (c) and CNNC-15 (d) samples.
Fig. 7.  TG curves (a) and DTG curves (b) of CN, CNC, CNN-15, and CNNC-15.
Fig. 8.  Comparison of different catalyst H2 production activity of CN, CNC, CNN-15, and CNNC-15 (a). Comparison of hydrogen production performance of composite with different nickel content (b) and copper content (c). Effect of different pH triethanolamine aqueous to the photocatalytic property of CNNC-15 (d). Stability testing of CNNC-15 composite in this system (e). Apparent quantum efficiency (QE) of the CNNC-15 (f).
Photocatalyst Co-catalyst Light source Sacrificial reagent Activity
(μmol/ (h g))
Ref.
g-C3N4 Ni-Cu 5 W LED
(≥ 420 nm)
15 vol.% TEOA 2088.28 This work
g-C3N4 S-Ni 300 W Xe-lamp
(> 420 nm)
20 vol.% TEOA 2021.3 [12]
g-C3N4 Pt-Pd 300 W Xe-lamp
(≥ 400 nm)
10 vol.% TEOA 1600.8 [28]
g-C3N4 NiS 350 W Xe-lamp,
(≥ 420 nm)
15 vol.% TEOA 593.6 [35]
g-C3N4 Pt-C 350 W Xe-lamp,
(≥ 420 nm)
15 vol.% TEOA 212.8 [52]
g-C3N4 C Xe-lamp,
(> 420 nm)
15 vol.% TEOA 410.1 [55]
g-C3N4 MoP 300 W Xe-lamp (> 400 nm) 10 vol.% TEOA 327.5 [65]
Table 2  Comparison of photocatalytic activity.
Fig. 9.  i-t curve (a), LSV curve (b) and Nyquist curve (c) curve for CN, CNC, CNN-15, and CNNC-15 photocomposites.
Fig. 10.  UV-vis absorption spectra of CN, CNC, CNN-15, and CNNC-15 photocomposites.
Fig. 11.  PL spectra of CN, CNC, CNN-15, and CNNC-15 (a) and transient fluorescence spectra (b).
Samples Pre-exponential factors, A Lifetime, <τ> (ns) Average lifetime, <τ> (ns) ket (s-1) χ2
EY A = 100 τ=0.1979 0.1979 --- 1.07
EY-CN A1 = 36.61
A2 = 33.00
A3 = 30.39
τ1=8.357
τ2 = 1.660
τ3=96.99
4.0702 5.920 × 108 1.02
EY-CNC A1 = 35.79
A2 = 31.39
A3 = 32.39
τ1=8.274
τ2 = 99.52
τ3 = 1.498
3.7674 6.575 × 108 1.09
EY-CNN-15 A1 = 36.20
A2 = 26.43
A3 = 37.37
τ1=8.469
τ2 = 91.23
τ3 = 1.664
3.7009 5.900 × 108 1.08
EY-CNNC-15 A1 = 41.98
A2 = 26.68
A3 = 31.35
τ1=5.519
τ2 = 1.061
τ3=48.44
2.9948 9.218 × 108 1.09
Table 3  Attenuation parameters o photocatalyst.
Fig. 12.  Possible photocatalytic hydrogen evolution mechanism of CNNC-15 under visible light radiation.
[1] W.L. Yu, J.X. Chen, T.T. Shang, L.F. Chen, L. Gu, T.Y. Peng, Appl. Catal. B 219 (2017) 693-704.
[2] K. Fan, Z.L. Jin, G.R. Wang, H. Yang, D.D. Liu, H.Y. Hu, G.X. Lu, Y.P. Bi, Catal. Sci. Technol. 8 (2018) 2352-2363.
[3] L.J. Zhang, X.Q. Hao, Q.Y. Jian, Z.L. Jin, J. Solid State Chem. 274 (2019) 286-294.
[4] A.Y. Meng, L.Y. Zhang, B. Cheng, J.G. Yu, Adv. Mater. 31 (2019), 1807660.
[5] L.J. Zhang, Z.L. Jin, X.L. Ma, Y.P. Zhang, H.Y. Wang, New J. Chem. 43 (2019) 3609-3618.
[6] G.X. Zhao, G.G. Liu, H. Pang, H.M. Liu, H.B. Zhang, K. Chang, X.U. Meng, X.J. Wang, J.H. Ye, Small 12 (2016) 6160-6166.
pmid: 27717207
[7] A. Kudo, M. Sekizawa, Chem. Commun. (2000) 1371-1372.
[8] G. Swain, S. Sultana, K. Parida, Inorg. Chem. 58 (2019) 9941-9955.
doi: 10.1021/acs.inorgchem.9b01105 pmid: 31310531
[9] L.J. Zhang, G.R. Wang, Z.L. Jin, New J. Chem. 43 (2019) 6411-6421.
[10] Z.J. Wang, Z.L. Jin, H. Yuan, G.R. Wang, B.Z. Ma, J. Colloid, Interf. Sci. 532 (2018) 287-299.
[11] D.D. Liu, Z.L. Jin, H.X. Li, G.X. Lu, Appl. Surf. Sci. 423 (2017) 255-265.
[12] C.Z. Sun, H. Zhang, H. Liu, X.X. Zheng, W.X. Zou, L. Dong, L. Qi, Appl. Catal. B 235 (2018) 66-74.
doi: 10.1016/j.apcatb.2018.04.050
[13] X.X. Zou, R. Silva, A. Goswami, T. Asefa, Appl. Surf. Sci. 357 (2015) 221-228.
[14] J.X. Xu, Y.H. Qi, L. Wang, Appl. Catal. B 246 (2019) 72-81.
doi: 10.1016/j.apcatb.2019.01.045
[15] G.F. Liao, Y. Gong, L. Zhang, H.Y. Gao, G.J. Yang, B.Z. Fang, Energy Environ. Sci. 12 (2019) 2080-2147.
doi: 10.1039/C9EE00717B
[16] L.J. Zhang, Z.L. Jin, Y.B. Li, X.Q. Hao, F.L. Han, Catal. Lett. 149 (2019) 2397-2407.
[17] J.W. Huang, Y. Zhang, Y. Ding, ACS Catal. 7 (2017) 1841-1845.
[18] X.Y. Qu, S.Z. Hu, J. Bai, P. Li, G. Lu, X.X. Kang, J. Mater. Sci. Technol. 34 (2018) 1932-1938.
[19] M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci. Technol. 34 (2018) 1511-1525.
[20] W.B. Li, C. Feng, S.Y. Dai, J.G. Yue, F.X. Hua, H. Hou, Appl. Catal. B 168-169 (2015) 465-471.
[21] Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Nanoscale 7 (2015) 13723-13733.
doi: 10.1039/c5nr03260a pmid: 26220662
[22] J. Jin, Q. Liang, C.Y. Ding, Z.Y. Li, S. Xu, J. Alloys. Compd. 691 (2017) 763-771.
[23] Y. Shiraishi, Y. Kofuji, S. Kanazawa, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Chem. Commun. 50 (2014) 15255-15258.
[24] K.H. Sun, J. Shen, Q.Q. Liu, H. Tang, M.Y. Zhang, S. Zulfiqar, C.S. Lei, Chin. J. Catal. 41 (2020) 72-81.
[25] Y. Li, Y.T. Gong, X. Xu, P.F. Zhang, H.R. Li, Y. Wang, Catal. Commun. 28 (2012) 9-12.
[26] Y.X. Li, H. Li, Y.F. Li, S.Q. Peng, Y.H. Hu, Chem. Eng. J. 344 (2018) 506-513.
[27] X.F. Song, H. Tao, L.X. Chen, Y. Sun, Mater. Lett. 116 (2014) 265-267.
[28] N. Xiao, S.S. Li, S. Liu, B.R. Xu, Y.D. Li, Y.Q. Gao, L. Ge, G.W. Lu, Chin. J. Catal. 40 (2019) 352-361.
doi: 10.1016/S1872-2067(18)63180-8
[29] H.H. Ou, P.J. Yang, L.H. Lin, M. Anpo, X.C. Wang, Angew. Chem. Int. Edit. 56 (2017) 10905-10910.
doi: 10.1002/anie.201705926
[30] J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B 243 (2019) 556-565.
doi: 10.1016/j.apcatb.2018.11.011
[31] E.X. Han, Y.Y. Li, Q.H. Wang, W.Q. Huang, L. Luo, W.Y. Hu, G.F. Huang, J. Mater. Sci. Technol. 35 (2019) 2288-2296.
[32] L.J. Zhang, X.Q. Hao, J.K. Li, Y.P. Wang, Z.L. Jin, Chin. J. Catal. 41 (2020) 82-94.
[33] X. Yan, Z.L. Jin, Y.P. Zhang, H. Liu, X.L. Ma, Phys. Chem. Chem. Phys. 21 (2019) 4501-4512.
pmid: 30735215
[34] H.G. Yu, P. Xiao, P. Wang, J.G. Yu, Appl. Catal. B 193 (2016) 217-225.
doi: 10.1016/j.apcatb.2016.04.028
[35] K.L. He, J. Xie, M.L. Li, X. Li, Appl. Surf. Sci. 430 (2018) 208-217.
[36] S.M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M.A. Kakimoto, J.I. Ozaki, S. Miyata, J. Phys. Chem. C 113 (2009) 20148-20151.
[37] X.X. Zou, R.F. Silva, A. Goswami, T. Asefa, Appl. Surf. Sci. 357 (2015) 221-228.
[38] X.Q. Hao Z.L. jin, S.X. Mina, G.X. Lu, RSC Adv. 6 (2016) 23709-23717.
[39] Z. Li, C. Kong, G.X. Lu, J. Phys. Chem. C 120 (2016) 56-63.
[40] V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Chem. Mater. 12 (2000) 3264-3270.
[41] Q.X. Guo, Xie Y, X.J. Wang, S.Y. Zhang, Hou T, S.H. Lv, Chem. Commun. 1 (2004) 26-27.
[42] Z.G. Chai, T.T. Zeng, Q. Li, L.Q. Lu, W.J. Xiao, D.S. Xu, J. Am. Chem. Soc. 138 (2016) 10128-10131.
doi: 10.1021/jacs.6b06860 pmid: 27477237
[43] L.J. Zhang, Z.L. Jin, Catal. Surv. Asia 23 (2019) 219-230.
[44] L.J. Zhang, Y.X. Wang, Z.N. Liu, Z.X. Yan, L.H. Zhu, Int. J. Electrochem. Sci. 13 (2018) 2164-2174.
[45] T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Appl. Surf. Sci. 255 (2008) 2730-2734.
[46] C. Zhu, A. Osherov, M.J. Panzer, Electrochim. Acta 111 (2013) 771-778.
[47] Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Adv. Mater. 25 (2013) 6291-6297.
pmid: 23996281
[48] M.J. Liu, P.F. Xia, L.Y. Zhang, B. Cheng, J.G. Yu, Eng. 6 (2018) 10472-10480.
[49] X. Li, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603-2636.
pmid: 26963902
[50] C.C. Feng, Z.H. Wang, Y. Ma, Y.J. Zhang, L. Wang, Y.P. Bi, Appl. Catal. B 205 (2017) 19-23.
[51] J.X. Low, B. Cheng, J.G. Yu, M. Jaroniec, Energy Storage Mater. 3 (2016) 24-35.
[52] Q.L. Xu, B. Cheng, J.G. Yu, G. Liu, Carbon 118 (2017) 241-249.
[53] S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150-2176.
doi: 10.1002/adma.201500033 pmid: 25704586
[54] Q. Yan, G.F. Huang, D.F. Li, M. Zhang, A.L. Pan, W.Q. Huang, J. Mater, Sci. Technol. 34 (2018) 2515-2520.
[55] Q.L. Xu, C.J. Jiang, B. Cheng, J.G. Yu, Dalton Trans. 46 (2017) 10611-10619.
pmid: 28379255
[56] R. Venu, T.S. Ramulu, S. Anandakumar, V.S. Rani, C.G. Kim, Colloid Surface A 384 (2011) 733-738.
[57] Y.B. Li, Z.L. Jin, L.J. Zhang, K. Fan, Chinese. J. Catal. 40 (2019) 390-402.
[58] X.C. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596-1606.
doi: 10.1021/cs300240x
[59] Y.W. Zhang, J.J. Liu, G. Wu, W. Chen, Nanoscale 4 (2012) 5300-5303.
doi: 10.1039/c2nr30948c pmid: 22776858
[60] F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang, Y.J. Sun, W.K. Ho, ACS Appl. Mater. Interf. 5 (2013) 11392-11401.
[61] L.J. Zhang, X.Q. Hao, Y.B. Li, Z.L. Jin, Appl. Surf. Sci. 499 (2020), 143862.
[62] H.Y. Wang, Z.L. jin, Sustain Energy Fuels 3 (2019) 173-183.
[63] Y.J. Ren, D.Q. Zeng, W.J. Ong, Chin. J. Catal. 40 (2019) 289-316.
[64] Q.L. Xu, B.C. Zhu, B. Cheng, J.G. Yu, M.H. Zhou, W.K. Ho, Appl. Catal. B 255 (2019), 117770.
[65] W. Liu, J. Shen, Q.Q. Liu, X.F. Yang, H. Tang, Appl. Surf. Sci. 462 (2018) 822-830.
[66] D.D. Ren, R.C. Shen, Z.M. Jiang, X.Y. Lu, X. Li, Chin. J. Catal 41 (41) (2020) 31-40.
[1] Jieqiong Wang, Zheng Liu, Changhong Zhan, Kexi Zhang, Xiaoyong Lai, Jinchun Tu, Yang Cao. 3D hierarchical NiS2/MoS2 nanostructures on CFP with enhanced electrocatalytic activity for hydrogen evolution reaction[J]. 材料科学与技术, 2020, 39(0): 155-160.
[2] Zheng Liu, Jieqiong Wang, Changhong Zhan, Jing Yu, Yang Cao, Jinchun Tu, Changsheng Shi. Phosphide-oxide honeycomb-like heterostructure CoP@CoMoO4/CC for enhanced hydrogen evolution reaction in alkaline solution[J]. 材料科学与技术, 2020, 46(0): 177-184.
[3] Vellaichamy Balakumar, Hyungjoo Kim, Ji Won Ryu, Ramalingam Manivannan, Young-A Son. Uniform assembly of gold nanoparticles on S-doped g-C3N4 nanocomposite for effective conversion of 4-nitrophenol by catalytic reduction[J]. 材料科学与技术, 2020, 40(0): 176-184.
[4] Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering[J]. 材料科学与技术, 2020, 49(0): 133-143.
[5] Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants[J]. 材料科学与技术, 2020, 41(0): 117-126.
[6] Seung Man Lim, Kyunglee Kang, Hongje Jang, Jung Tae Park. Environmental friendly synthesis of hierarchical mesoporous platinum nanoparticles templated by fucoidan biopolymer for enhanced hydrogen evolution reaction[J]. 材料科学与技术, 2020, 46(0): 185-190.
[7] Er-Xun Han, Yuan-Yuan Li, Qi-Hao Wang, Wei-Qing Huang, Leng Luo, Wangyu Hu, Gui-Fang Huang. Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition[J]. 材料科学与技术, 2019, 35(10): 2288-2296.
[8] Mitra Mousavi, Aziz Habibi-Yangjeh, Davod Seifzadeh. Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes[J]. 材料科学与技术, 2018, 34(9): 1638-1651.
[9] Qian Yan, Gui-Fang Huang, Dong-Feng Li, Ming Zhang, An-Lian Pan, Wei-Qing Huang. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets[J]. 材料科学与技术, 2018, 34(12): 2515-2520.
[10] Dandan Ke, Jin Wang, Hongming Zhang, Yuan Li, Lu Zhang, Xin Zhao, Shumin Han. Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles[J]. 材料科学与技术, 2018, 34(12): 2350-2358.
[11] Yongguang Wang, Xiangyu Wang, Bo Sun, Shaochun Tang, Xiangkang Meng. Concentration-dependent Morphology Control of Pt-coated-Ag Nanowires and Effects of Bimetallic Interfaces on Catalytic Activity[J]. J. Mater. Sci. Technol., 2016, 32(1): 41-47.
[12] Qi ZHENG, Yufeng ZHENG, Hongyu ZHANG, Xiaofeng SUN, Hengrong GUAN, Zhuangqi HU. A Banding Structure in a Ni-Cu-Si Cast Alloy[J]. J. Mater. Sci. Technol., 2008, 24(05): 813-815.
[13] Daoren GONG, Zhongmin YANG, Qiang SHEN, Lianmeng ZHANG. Densification of Mo Alloys at 1473 K by Adding Ni-Cu Solid Solution[J]. J. Mater. Sci. Technol., 2004, 20(03): 361-362.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.