J. Mater. Sci. Technol. ›› 2020, Vol. 52: 180-188.DOI: 10.1016/j.jmst.2020.02.047
• Research Article • Previous Articles Next Articles
Liao Wanga, Shujun Lib,*(), Mengning Yana,*(
), Yubo Chengc, Wentao Houb, Yiping Wangc, Songtao Aia, Rui Yangb, Kerong Daia
Received:
2019-12-30
Revised:
2020-02-03
Accepted:
2020-02-17
Published:
2020-09-15
Online:
2020-09-18
Contact:
Shujun Li,Mengning Yan
Liao Wang, Shujun Li, Mengning Yan, Yubo Cheng, Wentao Hou, Yiping Wang, Songtao Ai, Rui Yang, Kerong Dai. Fatigue properties of titanium alloy custom short stems fabricated by electron beam melting[J]. J. Mater. Sci. Technol., 2020, 52: 180-188.
Fig. 1. (a) Maximize the fit and fill of proximal femoral canal in three specific axial planes for the design of the custom short stem. P1: axial section at 20 mm above the lesser tranchanter. P2: axial section at the middle of the lesser tranchanter. P3: axial section at 10 mm below the lesser tranchanter. (b) 3D models of the custom short stems with four different lengths (20-80 mm). Custom short stems manufacturing via electron beam melting technology, including the stem body (B) and surface porous coating (P).
Ti | Al | V | C | Fe | O | N | H |
---|---|---|---|---|---|---|---|
Bal. | 6.42 | 3.94 | 0.01 | 0.18 | 0.13 | 0.01 | 0.0016 |
Table 1 Chemical composition of Ti-6Al-4 V alloy powder (wt%).
Ti | Al | V | C | Fe | O | N | H |
---|---|---|---|---|---|---|---|
Bal. | 6.42 | 3.94 | 0.01 | 0.18 | 0.13 | 0.01 | 0.0016 |
Fig. 4. The stem position, mesh and boundary conditions of the three dimensional FE model. For simulating the ISO7206-4 standard, the models of the stem were oriented in adduction of 10° and flexion of 9°. A maximum vertical force of 2300 N was applied on the femoral head, and all the nodes of the external surface of the cement were fixed.
Fig. 9. (a) Test regions for the studied short stems (circled by red rectangular dash line). Micro-CT results of (b) HIPed and (c) as-fabricated (AF) samples fabricated by EBM. (d) Distribution of pore diameter in the as-fabricated sample.
Material | UTS (MPa) | YS (MPa) | EL (%) | RA (%) |
---|---|---|---|---|
As-fabricated | 1037 ± 15 | 951 ± 15 | 14.5 ± 1 | 43 ± 4 |
HIP | 981 ± 10 | 892 ± 10 | 15.5 ± 1 | 52 ± 3 |
Table 2 Tensile properties of the EBM Ti-6Al-4V samples before and after the HIP.
Material | UTS (MPa) | YS (MPa) | EL (%) | RA (%) |
---|---|---|---|---|
As-fabricated | 1037 ± 15 | 951 ± 15 | 14.5 ± 1 | 43 ± 4 |
HIP | 981 ± 10 | 892 ± 10 | 15.5 ± 1 | 52 ± 3 |
Model | 20 | 40 | 60 | 80 |
---|---|---|---|---|
As-fabricated | 5,000,000 | 5,000,000 | 1,585,153 | 393,983 |
HIP | 5,000,000 | 5,000,000 | 2,113,568 | 2,347,178 |
Table 3 Fatigue properties of the studied custom short stems (cycles).
Model | 20 | 40 | 60 | 80 |
---|---|---|---|---|
As-fabricated | 5,000,000 | 5,000,000 | 1,585,153 | 393,983 |
HIP | 5,000,000 | 5,000,000 | 2,113,568 | 2,347,178 |
Model | 20 | 40 | 60 | 80 | ||||
---|---|---|---|---|---|---|---|---|
Height (mm) | Area (mm2) | Height (mm) | Area (mm2) | Height (mm) | Area (mm2) | Height (mm) | Area (mm2) | |
As-fabricated | Unfailure | Unfailure | 48 | 70 | ||||
HIP | Unfailure | Unfailure | 46 | 65 | ||||
Maximum tensile stress | 63.7 | 177.9 | 33.1 | 141.8 | 48.6 | 134.9 | 68.7 | 123.7 |
Table 4 The height of fatigue fracture position and its corresponding sectional area of the studied custom short stems.
Model | 20 | 40 | 60 | 80 | ||||
---|---|---|---|---|---|---|---|---|
Height (mm) | Area (mm2) | Height (mm) | Area (mm2) | Height (mm) | Area (mm2) | Height (mm) | Area (mm2) | |
As-fabricated | Unfailure | Unfailure | 48 | 70 | ||||
HIP | Unfailure | Unfailure | 46 | 65 | ||||
Maximum tensile stress | 63.7 | 177.9 | 33.1 | 141.8 | 48.6 | 134.9 | 68.7 | 123.7 |
Fig. 11. SEM images of fracture surface of the studied model 60/60HIP, 80/80HIP stem after high-cycle fatigue, with different notations representing fracture characteristics. (I) Fatigue crack initiation region. (II) Fatigue propagation region. (III) Fast fracture region. (a) Crack initiation site. (b) Secondary crack. (c) Dimple.
Fig. 12. Maximum tensile stress distributions obtained by FE simulation in the studied short stems with varying stem lengths under the same loading condition.
Fig. 13. Morphologies and areas of the fracture cross section at the site with the maximum tensile stress of the studied short stems with varying stem lengths simulated by FE method.
[1] |
M. Loppini, G. Grappiolo , Efort Open Rev., 3(2018), pp. 149-159.
DOI URL |
[2] |
F. Giardina, F. Castagnini, S. Stea , J. Arthroplasty, 33(2018), pp. 1794-1799.
DOI URL |
[3] | S. Lidder, D.J. Epstein, G. Scott , Bone Joint J., 101(2019), pp. 502-511. |
[4] | Y.H. Kim, J.W. Park, J.S. Kim , J. Arthroplasty, 31(2016), pp. 180-185. |
[5] |
C. Schnurr, A. Loucif, T. Patzer, B. Schellen, J. Beckmann, P. Eysel , Arch. Orthop. Trauma Surg., 138(2018), pp. 573-579.
DOI URL |
[6] | A.V. Lombardi, A.G. Manocchio, K.R. Berend, J. Michael, J.B. Adams , Surg. Technol. Int., 32(2018), pp. 233-238. |
[7] |
F. Pogliacomi, P. Schiavi, G. Grappiolo, F. Ceccarelli, E. Vaienti , Int. Orthop., 24(2019), pp. 1-8.
DOI URL |
[8] |
G. Yamako, E. Chosa, K. Totoribe, S. Watanabe, T. Sakamoto , Med. Eng. Phys., 37(2015), pp. 820-825.
DOI URL |
[9] |
G.I. Drosos, P. Touzopoulos , Hip. Int., 29(2019), pp. 118-127.
DOI URL |
[10] |
R.M. Patel, S.D. Stulberg , Orthop. Clin. North Am., 45(2014), pp. 19-31.
DOI URL |
[11] |
I. Chow, R.M. Patel, S.D. Stulberg , J. Arthroplasty, 30(2015), pp. 600-606.
DOI URL |
[12] | O. Abdelaal, S. Darwish, H. El-Hofy, Y. Saito , Int. J. Artif. Organs, 42(2019), pp. 271-290. |
[13] | H.A. Hosny, S.C. Srinivasan, M.J. Hall, J. Keenan, H. Fekry , Acta Orthop. Belg., 83(2017), pp. 617-623. |
[14] |
M. Cronskär, M. Bäckström, L.E. Rännar, Rapid Prototyping J., 19(2013), pp. 365-372.
DOI URL |
[15] |
C.T. Yang, H.W. Wei, H.C. Kao, C.K. Cheng , Med. Eng. Phys., 31(2009), pp. 994-1001.
DOI URL |
[16] |
B. Jetté, V. Brailovski, C. Simoneau, M. Dumas, P. Terriault, J. Mech. Behav. Biomed. Mater., 77(2018), pp. 539-550.
DOI URL |
[17] |
B. Jetté, V. Brailovski, M. Dumas, C. Simoneau, P. Terriault, C. Simoneau, P. Terriault, J. Mech. Behav. Biomed. Mater., 77(2018), pp. 58-72.
DOI URL |
[18] |
A.S.M. Croitoru, B.A. Pacioga, C.S. Comsa, Appl. Surf. Sci., 417(2017), pp. 256-261.
DOI URL |
[19] |
L.C. Zhang, Y.J. Liu, S.J. Li, Y.L. Hao, Adv. Eng. Mater., 20 ( 2018), Article 1700842.
DOI URL PMID |
[20] |
Y.J. Liu, H.L. Wang, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.C. Zhang , Acta Mater., 126(2017), pp. 58-66.
DOI URL |
[21] | S. Zhao, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y. Li, L.C. Zhang, Y.L. Hao, R. Yang R.D.K. Misra, L.E. Murr, Acta Mater., 150(2018), pp. 1-15. |
[22] | Y.J. Liu, D.C. Ren, S.J. Li, H. Wang, L.C. Zhang, T.B. Sercombe, Addit. Manuf., 32 (2020), Article 101060. |
[23] | D.C. Ren, S.J. Li, H. Wang, W.T. Hou, Y.L. Hao, W. Jin, R. Yang R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol., 35(2019), pp. 285-294. |
[24] | S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker , Mater. Technol., 24(2009), pp. 23-28. |
[25] |
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang , Acta Mater., 113(2016), pp. 56-67.
DOI URL |
[26] |
A. Safdar, L.Y. Wei, A. Snis, Z. Lai , Mater. Charact., 65(2012), pp. 8-15.
DOI URL |
[27] | C. Leyens, M. Peters, Z. Chen, Titanium and Titanium Alloys, Chemical Industry Press, Beijing(2005). |
[28] | H. Shi, X. Ren, Mechanical Properties of Materials, Peking University Press, Beijing(2010). |
[29] | Z.X. Cui, Metallurgy and Heat Treatment, China Machine Press, Beijing(1989). |
[30] |
X.L. Zhao, S.J. Li, M. Zhang, Y.D. Liu, T.B. Sercombe, S.G. Wang, Y.L. Hao, R. Yang, L.E. Murr , Mater. Des., 95(2016), pp. 21-23.
DOI URL |
[31] |
S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. Richard, H. Maier, Int. J. Fatigue, 48(2013), pp. 300-307.
DOI URL |
[32] |
P. Edwards, M. Ramulu , Mater. Sci. Eng. A, 598(2014), pp. 327-337.
DOI URL |
[33] |
H.J. Gong, K. Rafi, H.F. Gu G.D.J. Ram,T. Starr, B. Stucker, Mater. Des., 86(2015), pp. 545-554.
DOI URL |
[34] |
J.J. Lewandowski, M. Seifi , Ann. Rev. Mater. Res., 46(2016), pp. 151-186.
DOI URL |
[35] |
J.Y. Buffière, S. Savelli, P.H. Jouneau, E. Maire, R. Fougeres , Mater. Sci. Eng. A, 316(2001), pp. 115-126.
DOI URL |
[36] |
H. Mayer, M. Papakyriacou, B. Zettl, S. Stanzl-Tschegg , Int. J. Fatigue, 25(2003), pp. 245-256.
DOI URL |
[37] |
Y. Murakami, M. Endo , Int. J. Fatigue, 16(1994), pp. 163-182.
DOI URL |
[38] |
M. Kahlin, H. Ansell, J.J. Moverare , Int. J. Fatigue, 103(2017), pp. 353-362.
DOI URL |
[39] |
D. Greitemeier, F. Palm, F. Syassen, T. Melz , Int. J. Fatigue, 94(2017), pp. 211-217.
DOI URL |
[40] |
A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, C.E. Duty , Int. J. Fatigue, 119(2019), pp. 173-184.
DOI URL |
[41] | S. Suresh, Fatigue of Materials, Cambridge University Press, New York( 1998) |
[1] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[2] | Pan Wang, Xinwei Li, Shumin Luo, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 173-179. |
[3] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[4] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[5] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[6] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[7] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[8] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[9] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[10] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[11] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[12] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[13] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[14] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[15] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||