J. Mater. Sci. Technol. ›› 2020, Vol. 52: 189-197.DOI: 10.1016/j.jmst.2020.04.015
• Research Article • Previous Articles Next Articles
Xiaoming Qiana, Nick Parsonb, X.-Grant Chena,*()
Received:
2019-11-23
Revised:
2020-03-13
Accepted:
2020-03-19
Published:
2020-09-15
Online:
2020-09-18
Contact:
X.-Grant Chen
Xiaoming Qian, Nick Parson, X.-Grant Chen. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing[J]. J. Mater. Sci. Technol., 2020, 52: 189-197.
Alloy | Mg | Si | Fe | Mn | Al |
---|---|---|---|---|---|
Base | 0.79 | 1 | 0.18 | 0.05 | Bal. |
0.5 Mn | 0.83 | 1.01 | 0.22 | 0.50 | Bal. |
0.75 Mn | 0.84 | 1.02 | 0.23 | 0.72 | Bal. |
1 Mn | 0.81 | 1.02 | 0.24 | 0.99 | Bal. |
Table 1 Chemical composition (wt.%) of the experimental alloys.
Alloy | Mg | Si | Fe | Mn | Al |
---|---|---|---|---|---|
Base | 0.79 | 1 | 0.18 | 0.05 | Bal. |
0.5 Mn | 0.83 | 1.01 | 0.22 | 0.50 | Bal. |
0.75 Mn | 0.84 | 1.02 | 0.23 | 0.72 | Bal. |
1 Mn | 0.81 | 1.02 | 0.24 | 0.99 | Bal. |
Fig. 1. Optical micrographs of 0.5 Mn (a) and 1 Mn (b) alloys after 0.5% HF etching for 40 s. The inset images are SEM micrographs of an unetched surface.
Fig. 4. All Euler orientation maps of four experimental alloys after hot deformation: (a) the base, (b) 0.5 Mn, (c) 0.75 Mn and (d) 1 Mn alloys; the white lines indicate 2°-5°, the green lines indicate 5°-15°, and the black lines indicate >15°.
Fig. 6. All Euler orientation maps of the experimental alloys after different annealing times; the white lines indicate boundaries of 2°-5°, light green lines indicate boundaries of 5°-15°, and black lines show boundaries of >15°.
Fig. 7. Densities of the misorientation angle boundary of 2°-5° and over 15° in (a) the base, (b) 0.5 Mn, (c) 0.75 Mn and (d) 1 Mn alloys with different annealing time.
Fig. 9. SEM microimages of the dispersoid evolution in the 1 Mn alloy before annealing (a) and after annealing at 500 °C for 2 h (b), 4 h (c), and 8 h (d). Bright field TEM images are inset in (a) and (c).
Fig. 13. A schematic of the recrystallization mechanism: (a) after deformation and before annealing, (b) formation of subgrains during annealing, (c) formation of recrystallized grains.
[1] |
A. Cuniberti, A. Tolley M.V. Castro Riglos, R. Giovachini, Mater. Sci. Eng. A, 527(2010), pp. 5307-5311.
DOI URL |
[2] |
M. Usta, M.E. Glicksman, R.N. Wright , Metall. Mater. Trans. A, 35(2004), pp. 435-438.
DOI URL |
[3] |
K. Liu, X.-G. Chen, Mater. Des., 84(2015), pp. 340-350.
DOI URL |
[4] |
Z. Li, Z. Zhang, X.-G. Chen, Mater. Sci. Eng. A, 708(2017), pp. 383-394.
DOI URL |
[5] |
K. Liu, H. Ma, X.-G. Chen, J. Alloys. Compd., 694(2017), pp. 354-365.
DOI URL |
[6] | X. Qian, N. Parson, X.-G. Chen, Mate. Sci. Eng. A, 764 ( 2019), Article 138253. |
[7] |
C.L. Liu, H. Azizi-alizamini, N.C. Parson, W.J. Poole, Q. Du, Trans. Nonferrous Met. Soc. China, 27(2017), pp. 747-753.
DOI URL |
[8] |
C. Li, K. Liu, X.-G. Chen, J. Mater. Sci. Technol., 39(2020), pp. 135-143.
DOI URL |
[9] | C. Liu , Microstructure Evolution During Homogenization and Its Effect on the High Temperature Deformation Behaviour in AA6082 Based Alloys, PhD Thesis, The University of British Columbia( 2017),pp. 74-92. |
[10] |
C. Liu, Q. Du, N. Parson, W. Poole , Scr. Mater., 152(2018), pp. 59-63.
DOI URL |
[11] |
S. Lin, Z. Nie, H. Huang, B. Li , Mater. Des., 31(2010), pp. 1607-1612.
DOI URL |
[12] | H.J. McQueen, S. Spigarelli, M.E. Kassner, E. Evagelista, Hot Deformation and Processing of Aluminum Alloys, CRC, Bradenton, FL (2011), pp. 383-403. |
[13] | J. Corral, E.A. Trillo, Y. Li, L.E. Murr, J. Mater. Sci., 19(2000), pp. 2117-2122. |
[14] | I.N. Fridlyand, A.M. Drits A.A. Yeliseyev, Light weight and High-temperature Alloys and the Processing of Them, Nauka, Moscow(1986), pp. 126-130. |
[15] |
Y.W. Riddle, T.H. Sanders , Metal. Mater. Trans. A, 35(2004), pp. 341-350.
DOI URL |
[16] |
R.R. Sawtell, C.L. Jensen , Metal. Trans. A, 21(1990), pp. 421-430.
DOI URL |
[17] |
K.H. Chen, H.C. Fang, Z. Zhang, X. Chen, G. Liu , Mater. Sci. Eng. A, 497(2008), pp. 426-431.
DOI URL |
[18] |
M.B. Kannan, V.S. Raja, Eng. Fract. Mech., 77 ( 2010), pp. 249-256
DOI URL |
[19] |
F.-S. Lin, E.A. Starke Jr., Mater. Sci. Eng. A, 39(1979), pp. 27-41.
DOI URL |
[20] |
Y. Birol , Eng. Fail. Anal., 17(2010), pp. 1110-1116.
DOI URL |
[21] |
Z. Guo, G. Zhao, X.-G. Chen, Mater. Charact., 102(2015), pp. 122-130.
DOI URL |
[22] |
Z. Guo, G. Zhao, X.-G. Chen, Mater. Charact., 114(2016), pp. 79-87.
DOI URL |
[23] |
H. Li, Z. Gao, H. Yin, H. Jiang, X. Sua, J. Bin , Scr. Mater., 68(2013), pp. 59-62.
DOI URL |
[24] |
Y. Birol , Met. Mater. Int., 20(2014), pp. 727-732.
DOI URL |
[25] |
D. Tsivoulas, P.B. Prangnell , Acta Mater., 77(2014), pp. 1-16.
DOI URL |
[26] |
M. Shakiba, N. Parson, X.-G. Chen, Mater. Sci. Eng. A, 636(2015), pp. 572-581.
DOI URL |
[27] | M. Shakiba, N. Parson, X.-G. Chen, J. Mater. Eng. Perform., 24 (1) (2015), p. 405. |
[28] |
C. Shi, W. Mao, X.-G. Chen, Mater. Sci. Eng. A, 571(2013), pp. 83-91.
DOI URL |
[29] |
C. Shi, X.-G. Chen, Mater. Sci. Eng. A, 613(2014), pp. 91-102.
DOI URL |
[30] |
O.V. Mishin, D. Juul Jensen, N. Hansen , Metall. Mater. Trans. A, 41(2010), pp. 2936-2948.
DOI URL |
[31] |
C. Schafer, V. Mohles, G. Gottstein , Acta Mater., 59(2011), pp. 6574-6587.
DOI URL |
[32] |
J.D. Robson, P.B. Prangnell , Acta Mater., 49(2001), pp. 599-613.
DOI URL |
[33] |
R. Hu, T. Ogura, H. Tezuka, T. Sato, Q. Liu, J. Mater. Sci. Technol., 26 (3) (2010), pp. 237-243.
DOI URL |
[34] |
F.J. Humphreys , Acta Metall., 25(1977), pp. 1323-1344.
DOI URL |
[35] | D.P. Field, L. Behrens, J.M. Root , CMC-Comput. Mat. Contin., 14(2009), pp. 171-183. |
[36] |
L. Lodgaard, N. Ryum , Mater. Sci. Eng. A, 283(2000), pp. 144-152
DOI URL |
[1] | Chen Li, Kun Liu, X.-Grant Chen. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys [J]. J. Mater. Sci. Technol., 2020, 39(0): 135-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||