J. Mater. Sci. Technol. ›› 2021, Vol. 80: 179-190.DOI: 10.1016/j.jmst.2021.01.001
• Research Article • Previous Articles Next Articles
Jintao Shuaia,b, Xiao Zuoa, Zhenyu Wanga, Lili Suna, Rende Chena, Li Wanga, Aiying Wanga,b,c,*(), Peiling Kea,b,c,*(
)
Received:
2020-03-28
Accepted:
2020-09-27
Published:
2021-01-05
Online:
2021-01-05
Contact:
Aiying Wang,Peiling Ke
About author:
kepl@nimte.ac.cn (P. Ke).Jintao Shuai, Xiao Zuo, Zhenyu Wang, Lili Sun, Rende Chen, Li Wang, Aiying Wang, Peiling Ke. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads[J]. J. Mater. Sci. Technol., 2021, 80: 179-190.
Ti/TiAlN-3 | Ti/TiAlN-6 | Ti/TiAlN-12 | Ti/TiAlN-24 | Ti/TiAlN-72 | |
---|---|---|---|---|---|
Temperature (°C) | 300 | ||||
Targets current (A) | Ti layers- Ti: 70, TiAlN: 0 | ||||
TiAlN layers- Ti: 0, TiAlN: 70 | |||||
Bias voltage (V) | Ti and TiAlN layers: -80 | ||||
Pressure (Pa) | Ti layer- 2.7 (Ar), TiAlN layer- 6.7 (N2) | ||||
Deposition time for each layer (min) | Ti: 10 | Ti: 5 | Ti: 2.5 | Ti: 1.25 | Ti: 0.4 |
TiAlN: 76 | TiAlN: 38 | TiAlN: 19 | TiAlN: 9.5 | TiAlN: 3.1 |
Table 1 Process parameters of the Ti/TiAlN multilayer coatings.
Ti/TiAlN-3 | Ti/TiAlN-6 | Ti/TiAlN-12 | Ti/TiAlN-24 | Ti/TiAlN-72 | |
---|---|---|---|---|---|
Temperature (°C) | 300 | ||||
Targets current (A) | Ti layers- Ti: 70, TiAlN: 0 | ||||
TiAlN layers- Ti: 0, TiAlN: 70 | |||||
Bias voltage (V) | Ti and TiAlN layers: -80 | ||||
Pressure (Pa) | Ti layer- 2.7 (Ar), TiAlN layer- 6.7 (N2) | ||||
Deposition time for each layer (min) | Ti: 10 | Ti: 5 | Ti: 2.5 | Ti: 1.25 | Ti: 0.4 |
TiAlN: 76 | TiAlN: 38 | TiAlN: 19 | TiAlN: 9.5 | TiAlN: 3.1 |
Sample | Ti | Al | N |
---|---|---|---|
Ti/TiAlN-3 | 18.67 ± 0.17 | 31.29 ± 0.25 | 50.04 ± 0.32 |
Ti/TiAlN-6 | 17.85 ± 1.03 | 32.92 ± 0.74 | 49.23 ± 0.67 |
Ti/TiAlN-12 | 18.45 ± 0.51 | 32.30 ± 1.96 | 49.25 ± 1.47 |
Ti/TiAlN-24 | 17.33 ± 0.87 | 33.68 ± 2.07 | 48.99 ± 1.92 |
Ti/TiAlN-72 | 17.73 ± 0.91 | 32.63 ± 0.24 | 49.63 ± 0.67 |
Table 2 Chemical composition of the Ti/TiAlN multilayer coatings. (at.%).
Sample | Ti | Al | N |
---|---|---|---|
Ti/TiAlN-3 | 18.67 ± 0.17 | 31.29 ± 0.25 | 50.04 ± 0.32 |
Ti/TiAlN-6 | 17.85 ± 1.03 | 32.92 ± 0.74 | 49.23 ± 0.67 |
Ti/TiAlN-12 | 18.45 ± 0.51 | 32.30 ± 1.96 | 49.25 ± 1.47 |
Ti/TiAlN-24 | 17.33 ± 0.87 | 33.68 ± 2.07 | 48.99 ± 1.92 |
Ti/TiAlN-72 | 17.73 ± 0.91 | 32.63 ± 0.24 | 49.63 ± 0.67 |
Fig. 5. XPS spectra of Ti/TiAlN multilayer coatings: (a) Ti 2p (b) Al 2p (c) N 1s and XPS spectra fitting results of Ti/TiAlN-6: (d) Ti 2p (e) Al 2p (f) N 1s.
Fig. 7. (a) Adhesion strength, (b)-(f) scratch morphology of the Ti/TiAlN multilayer coatings and (g)-(k) enlarged images of the framed area in Fig. 7(b)-(f), respectively.
Fig. 9. Erosion behavior of the Ti/TiAlN-6 eroded by silica sand. SEM image of (a) surface morphology of the as-deposited coating, (b) micro spalling, (c) ring cracks, (d) propagated ring cracks, (e) layer by layer erosion and (f) erosion scares.
Fig. 10. Cross-sectional morphology of the Ti/TiAlN-6 eroded by silica sand. SEM image of (a) cross-sectional morphology of the as-deposited coating, (b) erosion at the top TiAlN layer, (c) enlarged image of the framed area in (b), (d) layer by layer erosion, (e) erosion at the second TiAlN layer and (f) plastic deformation at the substrate.
Fig. 11. Erosion behavior of the Ti/TiAlN-6 eroded by glass beads. SEM image of (a) cracks in the macroparticle, (b) ring cracks around the pit, (c) propagated ring cracks, (d) squamous cracks, (e) development of the pit and (f) erosion scares.
Fig. 12. Cross-sectional morphology of the Ti/TiAlN-6 eroded by glass beads. SEM image of (a) unpolished cross-sectional erosion scare, (b) polished cross-sectional erosion scare, (c) enlarged image of the framed area in (b), (d) deflection of the lateral crack, (e) development of the pit and (f) plastic deformation at the substrate.
[1] |
E. Bousser, L. Martinu, J.E. Klemberg-Sapieha, Surf. Coat. Technol. 257 (2014) 165-181.
DOI URL |
[2] |
J. Lin, R. Wei, F. Ge, Y. Li, X. Zhang, F. Huang, M. Lei, Surf. Coat. Technol. 336 (2018) 106-116.
DOI URL |
[3] |
D. Eichner, A. Schlieter, C. Leyens, L. Shang, S. Shayestehaminzadeh, J.M. Schneider, Wear 402-403 (2018) 187-195.
DOI URL |
[4] |
J. Deng, F. Wu, Y. Lian, Y. Xing, S. Li, Int. J. Refract. Met. Hard Mater. 35 (2012) 10-16.
DOI URL |
[5] |
R. Wei, E. Langa, J. Arps, Q. Yang, L. Zhao, Plasma Process. Polym. 4 (2007) S693-S699.
DOI URL |
[6] | Q. Yang, D.Y. Seo, L.R. Zhao, X.T. Zeng, Surf. Coat. Technol. 188 (2004) 168-173. |
[7] |
H. Zhang, Z. Li, W. He, B. Liao, G. He, X. Cao, Y. Li, Surf. Coat. Technol. 353 (2018) 210-220.
DOI URL |
[8] | Z. Wang, D. Zhang, P. Ke, X. Liu, A. Wang, J. Mater. Sci. Technol. 31 (2015) 37-42. |
[9] |
J. Shuai, X. Zuo, Z. Wang, P. Guo, B. Xu, J. Zhou, A. Wang, P. Ke, Ceram. Int. 46 (5) (2020) 6672-6681.
DOI URL |
[10] |
P. Wieciński, J. Smolik, H. Garbacz, K.J. Kurzydlowski, Vacuum 107 (2014) 277-283.
DOI URL |
[11] |
D.A. Colombo, A.D. Mandri, M.D. Echeverria, J.M. Massone, R.C. Dommarco, Thin Solid Films 647 (2018) 19-25.
DOI URL |
[12] |
A. Khoddami, D. Salimi-Majd, B. Mohammadi, Surf. Coat. Technol. 372 (2019) 173-189.
DOI URL |
[13] |
L.A. Dobrza´nski, K. Lukaszkowicz, J. Mater. Process. Technol. 157-158 (2004) 317-323.
DOI URL |
[14] |
L.A. Dobrza´nski, K. Lukaszkowicz, A. Kriˇz, J. Mater. Process. Technol. 143-144 (2003) 832-837.
DOI URL |
[15] |
W. Tillmann, E. Vogli, S. Momeni, Vacuum 84 (2009) 387-392.
DOI URL |
[16] |
E. Vogli, W. Tillmann, U. Selvadurai-Lassl, G. Fischer, J. Herper, Appl. Surf. Sci. 257 (2011) 8550-8557.
DOI URL |
[17] |
S. Lin, K. Zhou, M. Dai, E. Lan, Q. Shi, F. Hu, T. Kuang, C. Zhuang, Vacuum 122 (2015) 179-186.
DOI URL |
[18] |
X. Cao, W.F. He, B. Liao, H. Zhou, H.H. Zhang, C. Tan, Z.F. Yang, Surf. Coat. Technol. 365 (2019) 214-221.
DOI URL |
[19] |
B. Borawski, J. Singh, J.A. Todd, D.E. Wolfe, Wear 271 (11-12) (2011) 2782-2792.
DOI URL |
[20] |
R. Jiang, M. Li, Y. Yao, J. Guan, H. Lu, Front. Mater. Sci. 13 (2019) 107-125.
DOI URL |
[21] | A.C. Fischer-Cripps, Fischer-Cripps, Nanoindentation, third ed., Springer, New York, 2011, pp. 147-155. |
[22] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (2011) 1564-1583.
DOI URL |
[23] |
G. Greczynskia, L. Hultmana, M. Odén, Surf. Coat. Technol. 374 (2019) 923-934.
DOI URL |
[24] |
C. Badinia, S.M. Deambrosisb, O. Ostrovskayaa, V. Zinb, E. Padovanoa, E. Miorinb, M. Castellinoc, S. Biamino, Ceram. Int. 43 (2017) 5417-5426.
DOI URL |
[25] |
J.F. Marco, J.R. Gancedo, M.A. Auger, O. Sanchez, J.M. Albella, Surf. Interface Anal. 37 (2005) 1082-1091.
DOI URL |
[26] |
R. Ananthakumar, B. Subramanian, A. Kobayashi, M. Jayachandran, Ceram. Int. 38 (2012) 477-485.
DOI URL |
[27] |
P. Wieci´nski, J. Smolik, H. Garbacz, K.J. Kurzydłowski, Surf. Coat. Technol. 240 (2014) 23-31.
DOI URL |
[28] |
V. Bonu, M. Jeevitha, V.P. Kumar, S. Bysakh, H.C. Barshilia, Appl. Surf. Sci. 478 (2019) 872-881.
DOI URL |
[29] |
S. Hassani, J.E. Klemberg-Sapieha, L. Martinu, Surf. Coat. Technol. 205 (2010) 1426-1430.
DOI URL |
[30] | V.P. Swaminathan, R.H. Wei, D.W. Gandy, J. Eng. Gas. Turb. Power. 132 (8) (2010). |
[31] |
D.E. Wolfe, B.M. Gabriel, M.W. Reedy, Surf. Coat. Technol. 205 (2011) 4569-4576.
DOI URL |
[32] |
X. Cao, W. He, G. He, B. Liao, H. Zhang, J. Chen, C. Lv, Surf. Coat. Technol. 378 (2019), 125009.
DOI URL |
[33] |
J. Chen, M. Geng, Y. Li, Z. Yang, Y. Chai, G. He, Coatings 9 (2019) 11.
DOI URL |
[34] |
E. Bousser, M. Benkahoul, L. Martinu, J.E. Klemberg-Sapieha, Surf. Coat. Technol. 203 (2008) 776-780.
DOI URL |
[35] |
P. Wiecinski, J. Smolik, H. Garbacz, J. Bonarski, A. Mazurkiewicz, K.J. Kurzydlowski, Surf. Coat. Technol. 309 (2017) 709-718.
DOI URL |
[36] |
J. Di, S.S. Wang, L. Zhang, L.X. Cai, Y.H. Xie, Surf. Coat. Technol. 333 (2018) 115-124.
DOI URL |
[37] |
P.J. Burnett, D.S. Rickerby, Thin Solid Films 154 (1987) 403-416.
DOI URL |
[38] |
H. Ichimura, A. Rodrigo, Surf. Coat. Technol. 126 (2000) 152-158.
DOI URL |
[39] |
Y. Xie, H.M. Hawthorne, Surf. Coat. Technol. 155 (2002) 121-129.
DOI URL |
[40] |
S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Surf. Coat. Technol. 198 (2005) 74-84.
DOI URL |
[41] | E. Bousser, L. Martinu, J.E. Klemberg-Sapieha, J.Mater. Sci. 48 (2013) 5543-5558. |
[42] |
X. Xu, F. Su, Z. Li, Wear 430-431 (2019) 67-75.
DOI URL |
[43] |
X. Cai, Y. Gao, F. Cai, L. Zhang, S. Zhang, Appl. Surf. Sci. 483 (2019) 661-669.
DOI URL |
[44] | K. Weicheng, S. Hui, K. Dejun, J. Tribology 140 (2018) 041301, 9. |
[45] |
W.D. Münz, D.B. Lewis, S. Creasey, T. Hurkmans, T. Trinh, W. Ijzendorn, Vacuum 46 (1995) 323-330.
DOI URL |
[1] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[2] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[3] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[4] | Baoru Bian, Li Jin, Qiang Zheng, Fang Wang, Xiaohong Xu, Juan Du. Exchange-coupled nanocomposites with novel microstructure and enhanced remanence by a new approach [J]. J. Mater. Sci. Technol., 2021, 79(0): 118-122. |
[5] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[6] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[7] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[8] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[9] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[10] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[11] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[12] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[13] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[14] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[15] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||