J. Mater. Sci. Technol. ›› 2020, Vol. 51: 84-93.DOI: 10.1016/j.jmst.2020.02.042
• Research Article • Previous Articles Next Articles
Hui Yonga, Shihai Guoa, Zeming Yuana,b,*(), Yan Qia, Dongliang Zhaoa, Yanghuan Zhanga,b,*()
Received:
2019-12-03
Revised:
2020-01-27
Accepted:
2020-02-07
Published:
2020-08-15
Online:
2020-08-11
Contact:
Zeming Yuan,Yanghuan Zhang
Hui Yong, Shihai Guo, Zeming Yuan, Yan Qi, Dongliang Zhao, Yanghuan Zhang. Phase transformation, thermodynamics and kinetics property of Mg90Ce5RE5 (RE = La, Ce, Nd) hydrogen storage alloys[J]. J. Mater. Sci. Technol., 2020, 51: 84-93.
Alloy | Mg | Ce | RE | ΣRE |
---|---|---|---|---|
Mg90Ce5La5 | 90.19 | 4.87 | 4.94 | 9.81 |
Mg90Ce10 | 90.27 | 9.73 | - | .73 |
Mg90Ce5Nd5 | 90.33 | 4.83 | 4.86 | 9.67 |
Table 1 Chemical compositions of Mg90Ce5RE5 (RE = La, Ce, Nd) alloys (at.%).
Alloy | Mg | Ce | RE | ΣRE |
---|---|---|---|---|
Mg90Ce5La5 | 90.19 | 4.87 | 4.94 | 9.81 |
Mg90Ce10 | 90.27 | 9.73 | - | .73 |
Mg90Ce5Nd5 | 90.33 | 4.83 | 4.86 | 9.67 |
Fig. 5. PCT curves (a, c, e) of the activated Mg90Ce5RE5 (RE = La, Ce, Nd) alloys at different temperatures and the corresponding Van't Hoff graphs for La (a, b), Ce (c, d) and Nd (e, f).
Alloy | Equilibrium pressure (MPa) | Cmax(wt%) | |||
---|---|---|---|---|---|
380 °C | 360 °C | 340 °C | 320 °C | ||
Mg90Ce5La5 | 0.5322 | 0.3295 | 0.2006 | 0.1168 | 5.78 |
Mg90Ce10 | 0.5822 | 0.3608 | 0.2156 | 0.1229 | 5.74 |
Mg90Ce5Nd5 | 0.3745 | 0.2342 | 0.1411 | 0.0823 | 5.65 |
Table 2 Platform pressure of hydrogen release and reversible hydrogen storage capacity of Mg90Ce5RE5 (RE = La, Ce, Nd) alloys.
Alloy | Equilibrium pressure (MPa) | Cmax(wt%) | |||
---|---|---|---|---|---|
380 °C | 360 °C | 340 °C | 320 °C | ||
Mg90Ce5La5 | 0.5322 | 0.3295 | 0.2006 | 0.1168 | 5.78 |
Mg90Ce10 | 0.5822 | 0.3608 | 0.2156 | 0.1229 | 5.74 |
Mg90Ce5Nd5 | 0.3745 | 0.2342 | 0.1411 | 0.0823 | 5.65 |
Alloy | Hydrogen absorption | Hydrogen desorption | ||
---|---|---|---|---|
ΔH (kJ mol-1) | ΔS (J K-1 mol-1) | ΔH (kJ mol-1) | ΔS (J K-1 mol-1) | |
Mg90Ce5La5 | -81.2 | -138.2 | 82.9 | 140.7 |
Mg90Ce10 | -82.9 | -140.7 | 83.8 | 142.7 |
Mg90Ce5Nd5 | -81.4 | -135.5 | 82.8 | 137.6 |
Table 3 Enthalpy and entropy change of Mg90Ce5RE5 (RE = La, Ce, Nd) alloys.
Alloy | Hydrogen absorption | Hydrogen desorption | ||
---|---|---|---|---|
ΔH (kJ mol-1) | ΔS (J K-1 mol-1) | ΔH (kJ mol-1) | ΔS (J K-1 mol-1) | |
Mg90Ce5La5 | -81.2 | -138.2 | 82.9 | 140.7 |
Mg90Ce10 | -82.9 | -140.7 | 83.8 | 142.7 |
Mg90Ce5Nd5 | -81.4 | -135.5 | 82.8 | 137.6 |
Fig. 6. Isothermal hydrogen absorption curves of Mg90Ce5RE5 (RE = La, Ce, Nd) alloys at various temperature for (a) La, (b) Ce, (c) Nd and (d) hydrogenation saturation ratio (R2min) as function of temperature.
Fig. 7. Isothermal hydrogen desorption curves of Mg90Ce5RE5 (RE = La, Ce, Nd) alloys at various temperature for (a) La, (b) Ce, (c) Nd and (d) hydrogen desorption curves of the alloys at 320 °C.
Fig. 8. JMAK plots of La (a), Ce (b), Nd (c) and Arrhenius plots (d) for the dehydrogenation Mg90Ce5RE5 (RE = La, Ce, Nd) alloys at different temperatures.
[1] | M. Ball, M. Weeda , Int. J. Hydrogen Energy, 40(2015), pp. 7903-7919. |
[2] | L. Schlapbach, A. Züttel , Nature, 414(2001), pp. 353-358. |
[3] | G. Cipriani, V.D. Dio, F. Genduso, D.L. Cascia, R. Liga, R. Miceli, G.R. Galluzzo , Int. J. Hydrogen Energy, 39(2014), pp. 8482-8494. |
[4] | H. Shao, L. He, H. Lin, H.W. Li , Energy Technol., 6(2018), pp. 445-458. |
[5] | N.A.A. Rusman, M. Dahari , Int. J. Hydrogen Energy, 41(2016), pp. 12108-12126. |
[6] | V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellosta von Colbe, J.C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M.V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, M. Zhu, Int. J. Hydrogen Energy, 44(2019), pp. 7809-7859. |
[7] | K. Edalati, R. Uehiro, Y. Ikeda, H.W. Li, H. Emami, Y. Filinchuk, M. Ariita, X. Sauvage, I. Tanaka, E. Akiba, Z. Horita , Acta Mater., 149(2018), pp. 88-96. |
[8] | H.J. Wu, Z.Z. Sun, J.Q. Du, H. Ning, G.X. Li, W.L. Wei, Z.Q. Lan, J. Guo , Mater. Chem. Phys., 207(2018), pp. 221-225. |
[9] | X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, M. Zhu , Prog. Mater. Sci., 88(2017), pp. 1-48. |
[10] | N.S. Norberg, T.S. Arthur, S.J. Fredrick, A.L. Prieto, J. Am. Chem. Soc., 133(2011), pp. 10679-10681. |
[11] | Y.S. Lu, H. Wang, J.W. Liu, L.Z. Ouyang, M. Zhu , J. Power Sources, 396(2018), pp. 796-802. |
[12] | H. Yong, S.H. Guo, Z.M. Yuan, Y. Qi, D.L. Zhao, Y.H. Zhang , Int. J. Hydrogen Energy, 44(2019), pp. 16765-16776. |
[13] | Z.M. Yuan, B.W. Zhang, Y.H. Zhang, S.H. Guo, X.P. Dong, D.L. Zhao, J. Mater. Sci. Technol., 34(2018), pp. 1851-1858. |
[14] | W. Liu, K. Francois, A. Zinsou, J. Mater. Chem. A, 2(2014), pp. 9718-9726. |
[15] | Y.H. Sun, C.Q. Shen, Q.W. Lai, W. Liu, D.W. Wang, K.F. Aguey-Zinsou, Energy Storage Mater., 10(2018), pp. 168-198. |
[16] | Z. Šljivan$\check{c}$anin, B. Hammer, Phys. Rev. B, 65 (2002), Article 085414. |
[17] | B. Sakintuna, F. Lamari-Darkrim, M. Hirscher , Int. J. Hydrogen Energy, 32(2007), pp. 1121-1140. |
[18] | A. Dell’Era, M. Pasquali, S.V. Ciprioti, C. Lupi, A. Brotzu, F. Mura, R. Tuffi , Int. J. Hydrogen Energy, 42(2017), pp. 26333-26342. |
[19] | D. Korablov, F. Besenbacher, T.R. Jensen , Int. J. Hydrogen Energy, 43(2018), pp. 16804-16814. |
[20] | T. Liu, T.W. Zhang, X.Z. Zhang, X.G. Li , Int. J. Hydrogen Energy, 36(2011), pp. 3515-3520. |
[21] | S. Ohno, M. Uda , Trans. Jpn. Inst. Met., 48(1984), pp. 640-646. |
[22] | X.B. Xie, M. Chen, M.M. Hu, B.L. Wang, R.H. Yu, T. Liu , Int. J. Hydrogen Energy, 44(2019), pp. 10694-10712. |
[23] | S.H. Hong, S.N. Kwon, J.S. Bae, M.Y. Song , Int. J. Hydrogen Energy, 34(2009), pp. 1944-1950. |
[24] | L.S. Xie, J.S. Li, T.B. Zhang, L. Song , Int. J. Hydrogen Energy, 42(2017), pp. 21121-21130. |
[25] | L.Z. Ouyang, H.W. Dong, C.H. Peng, L.X. Sun, M. Zhu , Int. J. Hydrogen Energy, 32(2007), pp. 3929-3935. |
[26] | A.A. Poletaev, R.V. Denys, J.K. Solberg, B.P. Tarasov, V.A. Yartys, J. Alloys Compd., 509(2011), pp. S633-S639. |
[27] | J.X. Zou, X.Q. Zeng, Y.J. Ying, X. Chen, H. Guo, S. Zhou, W.J. Ding , Int. J. Hydrogen Energy, 38(2013), pp. 2337-2346. |
[28] | H.J. Lin, J.J. Tang, Q. Yu, H. Wang, L.Z. Ouyang, Y.J. Zhao, J.W. Liu, W.H. Wang, M. Zhu , Nano Energy, 9(2014), pp. 80-87. |
[29] | S.C. Zhou, P.K. Pan, T.P. Luo, D.H. Wu, L.T. Wei, B.Y. Tang, B.Y. Tang , Int. J. Hydrogen Energy, 39(2014), pp. 9254-9261. |
[30] | Y.H. Zhang, W. Zhang, W.G. Bu, Y. Cai, Y. Qi, S.H. Guo , Renew. Energy, 132(2019), pp. 137-175. |
[31] | H.W. Zhang, L. Fu, W.D. Xuan, H.Y. Qin, Z.G. Ji , J. Power Sources, 385(2018), pp. 27-31. |
[32] | T. Yang, Z.M. Yuan, W.G. Bu, Z.C. Jia, Y. Qi, Y.H. Zhang , Int. J. Hydrogen Energy, 41(2016), pp. 2689-2699. |
[33] | Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang , Int. J. Hydrogen Energy, 41(2016), pp. 5994-6003. |
[34] | J.X. Zou, X.Q. Zeng, Y.J. Ying, X. Chen, H. Guo, S. Zhou, W.J. Ding , Int. J. Hydrogen Energy, 38(2013), pp. 2337-2346. |
[35] | H. Yu, S. Bennici, A. Auroux , Int. J. Hydrogen Energy, 39(2014), pp. 11633-11641. |
[36] | J. Grbner, M. Hampl, R. Schmide-Fetzer, M.A. Easton, S.M. Zhu, M.A. Gibson, Intermetallics, 28(2012), pp. 92-101. |
[37] | X. Ding, R.R. Chen, Y.L. Jin, X.Y. Chen, J.J. Guo, Y.Q. Su, H.S. Ding, H.Z. Fu , J. Power Sources, 374(2018), pp. 158-165. |
[38] | H. Yong, S.H. Guo, Z.M. Yuan, W. Zhang, Y. Qi, D.L. Zhao, Y.H. Zhang, J. Rare Earths(2019), 10.1016/j.jre.2019.05.012 |
[39] | C.X. Shang, Z.X. Guo , Int. J. Hydrogen Energy, 32(2007), pp. 2920-2925. |
[40] | Y.H. Zhang, M. Ji, Z.M. Yuan, J.L. Gao, Y. Qi, X.P. Dong, S.H. Guo , J. Rare Earths, 36(2018), pp. 409-417. |
[41] | N. Kazuhiro, Z.Q. Tran, T. Yamamoto, E. Tanaka, S.D. McDonald, C.N. Gourlay, K. Yasuda, S. Matsumura, Sci. Rep., 5(2015), p. 8450. |
[42] | M. Zhu, Y.S. Lu, L.Z. Ouyang, H. Wang , Materials, 6(2013), pp. 4654-4674. |
[43] | X. Ding, R.R. Chen, X.Y. Chen, X.Z. Li, J.Q. Guo, Y.Q. Su, H.S. Ding, H.Z. Fu , Int. J. Hydrogen Energy, 43(2018), pp. 16617-16622. |
[44] | S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weigrber, B. Kieback, Int. J. Hydrogen Energy, 36(2011), pp. 10808-10815. |
[45] | L. Pasquini, E. Callini, M. Brighi, F. Boscherini, T. Montone, T.R. Jensen, C. Maurizio, M.V. Antisari, E. Bonetti, J. Nanopart. Res., 13(2011), pp. 5727-5737. |
[46] | B. Zahiri, M. Danaie, X. Tan, B.S. Amirkhiz, G.A. Botton, D. Mitlin, J. Phys. Chem. C, 116(2011), pp. 3188-3199. |
[47] | X.P. Dong, Y.R. Ma, L.Y. Yang, Y.F. Chen, X. Li , Appl. Surf. Sci., 484(2019), pp. 1198-1207. |
[48] | Y.H. Zhang, P.P. Wang, Z.H. Hou, Z.M. Yuan, Y. Qi, S.H. Guo, J. Mater. Sci. Technol., 35(2019), pp. 1727-1734. |
[49] | H.J. Lin, L.Z. Ouyang, H. Wang, D.Q. Zhao, W.H. Wang, D.L. Sun, M. Zhu , Int. J. Hydrogen Energy, 37(2012), pp. 14329-14335. |
[50] | Q. Li, Y.B. Pan, H.Y. Leng, K. Chou , Int. J. Hydrogen Energy, 39(2014), pp. 14247-14254. |
[51] | Y.Q. Li, Y.H. Zhang, H.W. Shang, Y. Qi, P. Li, D.L. Zhao , Int. J. Hydrogen Energy, 43(2018), pp. 6642-6653. |
[52] | Y.Q. Wang, Z.Y. Zhou, W.Z. Zhou, L.Q. Xu, J. Guo, Z.Q. Lan , Mater. Des., 111(2016), pp. 248-252. |
[53] | T. Liu, T.W. Zhang, C.G. Qin, M. Zhu, X.G. Li , J. Power Sources, 196(2011), pp. 9599-9604. |
[1] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[2] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[3] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[4] | Yao Jiang, Yuehui He, Haiyan Gao. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 89-104. |
[5] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[6] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[7] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[8] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
[9] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[10] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
[11] | Geng Liu, Zongbiao Dai, Zhigang Yang, Chi Zhang, Jun Li, Hao Chen. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate [J]. J. Mater. Sci. Technol., 2020, 49(0): 70-80. |
[12] | Hui Pan, Liwei Wang, Yi Lin, Feng Ge, Kang Zhao, Xin Wang, Zhongyu Cui. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54(0): 1-13. |
[13] | Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd [J]. J. Mater. Sci. Technol., 2020, 48(0): 123-129. |
[14] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[15] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Fan Yang, Yihan Zhou, Naifang Zhang, Sheng Cao, Liao Yu, Jianguo Li. Intergrowth mechanism and morphology prediction of faceted Al3Ni formed during solidification by a spatial geometric model [J]. J. Mater. Sci. Technol., 2020, 54(0): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||