J. Mater. Sci. Technol. ›› 2020, Vol. 54: 1-13.DOI: 10.1016/j.jmst.2020.02.074
• Research Article • Next Articles
Hui Panb, Liwei Wanga, Yi Linb, Feng Geb, Kang Zhaoa, Xin Wangb, Zhongyu Cuib,*()
Received:
2019-11-14
Revised:
2020-01-20
Accepted:
2020-02-27
Published:
2020-10-01
Online:
2020-10-21
Contact:
Zhongyu Cui
Hui Pan, Liwei Wang, Yi Lin, Feng Ge, Kang Zhao, Xin Wang, Zhongyu Cui. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution[J]. J. Mater. Sci. Technol., 2020, 54: 1-13.
Alloy | Al | Si | Zn | Mn | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
AZ31 | 3.19 | 0.025 | 0.81 | 0.30 | 0.006 | 0.002 | 0.001 | Bal. |
Table 1 Chemical composition (wt.%) of AZ31 magnesium alloy used in the present work.
Alloy | Al | Si | Zn | Mn | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
AZ31 | 3.19 | 0.025 | 0.81 | 0.30 | 0.006 | 0.002 | 0.001 | Bal. |
Fig. 3. SEM morphologies of the surface corrosion products on AZ31 magnesium alloy after immersion in the solutions containing 0.001 M (a1)-(a3), 0.01 M (b1)-(b3), and 0.1 M (c1)-(c3) NH4+ for 6 h (a1)-(c1), 24 h (a2)-(c2), and 120 h (a3)-(c3). (The delineated points are detected by EDS.).
Fig. 4. FTIR (a) and XRD (b) spectra of the corrosion products formed on AZ31 magnesium alloy surface after immersion in different solutions for 120 h.
Fig. 5. Cross-sectional morphology of corrosion product and the substrate beneath it of AZ31 magnesium alloys after 120 h immersion in solutions with 0.001 M (a), 0.01 M (b), (d), and 0.1 M NH4+ (c).
Fig. 6. Surface morphologies of AZ31 magnesium alloy without corrosion products after immersion in the solutions containing 0.001 M (a1)-(a3), 0.01 M (b1)-(b3), and 0.1 M (c1)-(c3) NH4+ for 6 h (a1)-(c1), 24 h (a2)-(c2), and 120 h (a3)-(c3).
Fig. 7. Changes of OCPs (a) and pH values (b) of AZ31 magnesium alloy in NH4+ solutions and the corresponding E-pH diagram (c), as well as the overlaid E-pH diagram of the N-H2O and Mg-H2O system (d).
Fig. 8. Polarization curves of AZ31 magnesium alloy in solutions with different concentrations of NH4+: (a) before IR compensation, (b) after IR compensation.
NH4+ concentration | Ecorr (VSCE) | bc (V dec-1) | icorr (mA cm2) |
---|---|---|---|
0.001 M | -1.524 | -0.618 | 0.029 |
0.01 M | -1.559 | -0.636 | 0.157 |
0.1 M | -1.722 | -0.972 | 1.954 |
Table 2 Corrosion parameters of AZ31 magnesium alloys in different (NH4)2SO4 solution derived from the IR-compensated polarization curves.
NH4+ concentration | Ecorr (VSCE) | bc (V dec-1) | icorr (mA cm2) |
---|---|---|---|
0.001 M | -1.524 | -0.618 | 0.029 |
0.01 M | -1.559 | -0.636 | 0.157 |
0.1 M | -1.722 | -0.972 | 1.954 |
Fig. 9. Nyquist diagrams and fitting lines of AZ31 magnesium alloys after immersion for different time in the solutions containing 0.001 M (a), 0.01 M (b), and 0.1 M NH4+ (c).
NH4+ concentration | Time (h) | Rs (Ω cm2) | CPEdl 10-6(Ω -1 cm-2 sn) | n1 | Rct (Ω cm2) | CPEdl 10-6(Ω -1 cm-2 sn) | n2 | Rf (Ω cm2) | RL1(Ω cm 2) | L1(H cm 2) | RL2(Ω cm 2) | L2(H cm 2) | Rp(Ω cm2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.001 M | 0.5 | 1000 | 12.37 | 0.84 | 1560 | 3911 | 1 | 368.8 | 1928.8 | ||||
3 | 991.8 | 12.76 | 0.87 | 2377 | 3044 | 0.97 | 869 | 3246 | |||||
6 | 997 | 12.8 | 0.85 | 3150 | 2326 | 1 | 1077 | 4227 | |||||
12 | 987.9 | 11.9 | 0.85 | 3219 | 1670 | 1 | 1177 | 4396 | |||||
24 | 1038 | 11.6 | 0.90 | 4382 | 4550 | 0.86 | 1046 | 5428 | |||||
48 | 1078 | 19.6 | 0.90 | 3835 | 3198 | 0.93 | 1482 | 5317 | |||||
72 | 1019 | 26.9 | 0.86 | 3972 | 4963 | 1 | 1184 | 5156 | |||||
96 | 1011 | 30.2 | 0.87 | 3668 | 4800 | 0.88 | 1272 | 4940 | |||||
120 | 1009 | 30.65 | 0.86 | 3986 | 4913 | 0.91 | 1326 | 5312 | |||||
0.01 M | 0.5 | 223.9 | 15.98 | 0.87 | 292.9 | 5773 | 0.96 | 111.1 | 454.8 | 11900 | 214 | ||
3 | 220.5 | 22.5 | 0.88 | 333 | 9399 | 1 | 79.5c | 890 | 27720 | 282 | |||
6 | 218.6 | 23.8 | 0.88 | 349.8 | 8718 | 0.99 | 88 | 876 | 34530 | 292 | |||
12 | 221 | 24.2 | 0.88 | 342.5 | 9315 | 0.98 | 88.6 | 1265 | 29820 | 321.5 | |||
24 | 281.5 | 24.8 | 0.88 | 394.7 | 9112 | 1 | 96 | 1362 | 48500 | 361 | |||
48 | 222.7 | 26.29 | 0.89 | 482 | 9363 | 1 | 110 | 1947 | 83000 | 454 | |||
72 | 222.8 | 29.1 | 0.89 | 555.9 | 11400 | 1 | 114 | 4096 | 121300 | 576 | |||
96 | 222.8 | 32.3 | 0.89 | 586 | 11610 | 1 | 116 | 1301 | 21040 | 456 | |||
120 | 219 | 36.67 | 0.89 | 599 | 13740 | 1 | 114.8 | 3649 | 36220 | 597 | |||
0.1 M | 0.5 | 45 | 18.9 | 0.95 | 14.5 | 26770 | 0.81 | 9 | 49.9 | 55.5 | 8.4 | 296.5 | 5.5 |
3 | 43 | 23.0 | 0.92 | 26.6 | 19460 | 0.81 | 20 | 66.5 | 115.6 | 21.6 | 859.8 | 12.1 | |
6 | 41 | 24.4 | 0.91 | 35 | 14110 | 0.93 | 17.9 | 89.6 | 281 | 34.1 | 2164 | 16.9 | |
12 | 42.9 | 24.5 | 0.92 | 47 | 11340 | 1 | 21 | 109 | 574.6 | 47.2 | 5419 | 22.2 | |
24 | 46 | 24.7 | 0.92 | 64.8 | 10000 | 1 | 27 | 134 | 1264 | 68 | 18200 | 30.2 | |
48 | 48.7 | 26.6 | 0.89 | 95.5 | 9373 | 1 | 34.6 | 204 | 3593 | 79.4 | |||
72 | 49.7 | 23.9 | 0.91 | 118.5 | 9314 | 1 | 38 | 294.7 | 5450 | 102.4 | |||
96 | 48 | 23.2 | 0.91 | 145 | 9303 | 1 | 48 | 399 | 8546 | 130.5 | |||
120 | 50 | 21.7 | 0.92 | 162 | 9517 | 1 | 50 | 491 | 10600 | 148.5 |
Table 3 The fitted electrochemical parameters for AZ31 magnesium in (NH4)2SO4 solution.
NH4+ concentration | Time (h) | Rs (Ω cm2) | CPEdl 10-6(Ω -1 cm-2 sn) | n1 | Rct (Ω cm2) | CPEdl 10-6(Ω -1 cm-2 sn) | n2 | Rf (Ω cm2) | RL1(Ω cm 2) | L1(H cm 2) | RL2(Ω cm 2) | L2(H cm 2) | Rp(Ω cm2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.001 M | 0.5 | 1000 | 12.37 | 0.84 | 1560 | 3911 | 1 | 368.8 | 1928.8 | ||||
3 | 991.8 | 12.76 | 0.87 | 2377 | 3044 | 0.97 | 869 | 3246 | |||||
6 | 997 | 12.8 | 0.85 | 3150 | 2326 | 1 | 1077 | 4227 | |||||
12 | 987.9 | 11.9 | 0.85 | 3219 | 1670 | 1 | 1177 | 4396 | |||||
24 | 1038 | 11.6 | 0.90 | 4382 | 4550 | 0.86 | 1046 | 5428 | |||||
48 | 1078 | 19.6 | 0.90 | 3835 | 3198 | 0.93 | 1482 | 5317 | |||||
72 | 1019 | 26.9 | 0.86 | 3972 | 4963 | 1 | 1184 | 5156 | |||||
96 | 1011 | 30.2 | 0.87 | 3668 | 4800 | 0.88 | 1272 | 4940 | |||||
120 | 1009 | 30.65 | 0.86 | 3986 | 4913 | 0.91 | 1326 | 5312 | |||||
0.01 M | 0.5 | 223.9 | 15.98 | 0.87 | 292.9 | 5773 | 0.96 | 111.1 | 454.8 | 11900 | 214 | ||
3 | 220.5 | 22.5 | 0.88 | 333 | 9399 | 1 | 79.5c | 890 | 27720 | 282 | |||
6 | 218.6 | 23.8 | 0.88 | 349.8 | 8718 | 0.99 | 88 | 876 | 34530 | 292 | |||
12 | 221 | 24.2 | 0.88 | 342.5 | 9315 | 0.98 | 88.6 | 1265 | 29820 | 321.5 | |||
24 | 281.5 | 24.8 | 0.88 | 394.7 | 9112 | 1 | 96 | 1362 | 48500 | 361 | |||
48 | 222.7 | 26.29 | 0.89 | 482 | 9363 | 1 | 110 | 1947 | 83000 | 454 | |||
72 | 222.8 | 29.1 | 0.89 | 555.9 | 11400 | 1 | 114 | 4096 | 121300 | 576 | |||
96 | 222.8 | 32.3 | 0.89 | 586 | 11610 | 1 | 116 | 1301 | 21040 | 456 | |||
120 | 219 | 36.67 | 0.89 | 599 | 13740 | 1 | 114.8 | 3649 | 36220 | 597 | |||
0.1 M | 0.5 | 45 | 18.9 | 0.95 | 14.5 | 26770 | 0.81 | 9 | 49.9 | 55.5 | 8.4 | 296.5 | 5.5 |
3 | 43 | 23.0 | 0.92 | 26.6 | 19460 | 0.81 | 20 | 66.5 | 115.6 | 21.6 | 859.8 | 12.1 | |
6 | 41 | 24.4 | 0.91 | 35 | 14110 | 0.93 | 17.9 | 89.6 | 281 | 34.1 | 2164 | 16.9 | |
12 | 42.9 | 24.5 | 0.92 | 47 | 11340 | 1 | 21 | 109 | 574.6 | 47.2 | 5419 | 22.2 | |
24 | 46 | 24.7 | 0.92 | 64.8 | 10000 | 1 | 27 | 134 | 1264 | 68 | 18200 | 30.2 | |
48 | 48.7 | 26.6 | 0.89 | 95.5 | 9373 | 1 | 34.6 | 204 | 3593 | 79.4 | |||
72 | 49.7 | 23.9 | 0.91 | 118.5 | 9314 | 1 | 38 | 294.7 | 5450 | 102.4 | |||
96 | 48 | 23.2 | 0.91 | 145 | 9303 | 1 | 48 | 399 | 8546 | 130.5 | |||
120 | 50 | 21.7 | 0.92 | 162 | 9517 | 1 | 50 | 491 | 10600 | 148.5 |
Fig. 11. Comparison of the corrosion rates of AZ31 magnesium alloy during immersion in the NH4+-containing solutions for different time. (b) is the local magnification image marked in (a).
Solutions | Ecorr (VSCE) | bc (V dec-1) | icorr (mA cm-2) | Pi (mm a-1) |
---|---|---|---|---|
(NH4)2SO4 (pH5.96) | -1.559 | -0.389 | 0.149 | 3.41 |
Na2SO4 (pH6.48) | -1.562 | -0.280 | 0.039 | 0.895 |
Na2SO4 (pH5.96) | -1.562 | -0.290 | 0.052 | 1.189 |
Table 4 Corrosion parameters of AZ31 magnesium alloys in different solutions derived from the polarization curves.
Solutions | Ecorr (VSCE) | bc (V dec-1) | icorr (mA cm-2) | Pi (mm a-1) |
---|---|---|---|---|
(NH4)2SO4 (pH5.96) | -1.559 | -0.389 | 0.149 | 3.41 |
Na2SO4 (pH6.48) | -1.562 | -0.280 | 0.039 | 0.895 |
Na2SO4 (pH5.96) | -1.562 | -0.290 | 0.052 | 1.189 |
Fig. 14. Normalized impedance diagrams of AZ31 magnesium alloys after immersion in the solutions containing 0.001 M (a), 0.01 M (b), and 0.1 M (c) NH4+ for different time and the comparison of the diagrams in different solutions at 0.5 h (d).
[1] |
R.J. Huang, Y. Zhang, C. Bozzetti, K.F. Ho, J.J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, A.S. Prevot, Nature 514 (2014) 218-222.
DOI URL PMID |
[2] | H. Fujii, S. Managi, Environ. Sci. Pollut. Res. 23 (2016) 2802-2812. |
[3] | G. Năstase, A. Şerban, A.F. Năstase, G. Dragomir, A.I. Brezeanu, Atmos. Environ. 184 (2018) 292-303. |
[4] |
F. Zhang, L. Xu, J. Chen, Y. Yu, Z. Niu, L. Yin, Atmos. Res. 106 (2012) 150-158.
DOI URL |
[5] | J. Chen, J. Wang, E. Han, W. Ke, Corros. Sci. 50 (2008) 1449-1459. |
[6] | X. Wang, D. Xu, R. Wu, X. Chen, Q. Peng, L. Jin, Y. Xin, Z. Zhang, Y. Liu, X. Chen, J. Mater. Sci. Technol. 34 (2018) 245-247. |
[7] | L. Hou, Z. Li, H. Zhao, Y. Pan, S. Pavlinich, X. Liu, X. Li, Y. Zheng, L. Li, J. Mater. Sci. Technol. 32 (2016) 874-882. |
[8] | H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, Z. Cui, Corros. Sci. 157 (2019) 420-437. |
[9] | M.R. Stoudt, JOM 60 (2008) 56. |
[10] | Z. Cui, X. Li, K. Xiao, C. Dong, Corros. Sci. 76 (2013) 243-256. |
[11] | Z. Cui, X. Li, K. Xiao, C. Dong, Z. Liu, L. Wang, Corros. Eng. Sci. Technol. 49 (2014) 363-371. |
[12] | J. Liao, M. Hotta, Corros. Sci. 100 (2015) 353-364. |
[13] | J. Liao, M. Hotta, Corros. Sci. 112 (2016) 276-288. |
[14] | H. Liu, F. Cao, G.L. Song, D. Zheng, Z. Shi, M.S. Dargusch, A. Atrens, J. Mater. Sci Technol.. 35 (2019) 2003-2016. |
[15] | R. Lindström, J.E. Svensson, L.G. Johansson, J. Electrochem. Soc. 149 (2002) B103-B107. |
[16] | M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Corros. Sci. 50 (2008) 3168-3178. |
[17] | G. Song, A. Atrens, D. St John, X. Wu, J. Nairn, Corros. Sci. 39 (1997) 1981-2004. |
[18] | A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corros. Sci. 50 (2008) 823-834. |
[19] | G.S. Frankel, A. Samaniego, N. Birbilis, Corros. Sci. 70 (2013) 104-111. |
[20] | B.J. Wang, D.K. Xu, J.H. Dong, W. Ke, J. Mater. Sci Technol.. 34 (2018) 1756-1764. |
[21] | M. Salgueiro Azevedo, C. Allély, K. Ogle, P. Volovitch, Corros. Sci. 90 (2015) 472-481. |
[22] | D. Battocchi, A.M. Simões, D.E. Tallman, G.P. Bierwagen, Corros. Sci. 48 (2006) 2226-2240. |
[23] | M.S. Azevedo, C. Allély, K. Ogle, P. Volovitch, Electrochim. Acta 153 (2015) 159-169. |
[24] | R.E. Lobnig, R.P. Frankenthal, D.J. Siconolfi, J.D. Sinclair, J. Electrochem. Soc. 140 (1993) 1902-1907. |
[25] | Q. Qu, L. Li, W. Bai, C. Yan, C.N. Cao, Corros. Sci. 47 (2005) 2832-2840. |
[26] | S. Körner, S.K. Das, S. Veenstra, J.E. Vermaat, Aquat. Bot. 71 (2001) 71-78. |
[27] | Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, M. Yu, X. Wang, Electrochim. Acta 278 (2018) 421-437. |
[28] | D. Buggio, M. Trueba, S.P. Trasatti, Corros. Sci. 104 (2016) 173-186. |
[29] | G. Citterio, S.P. Trasatti, M. Trueba, M. Bestetti, A. Da Forno, Surf. Coat. Technol. 254 (2014) 217-223. |
[30] | F. Cao, C. Zhao, G.L. Song, D. Zheng, Corros. Sci. 150 (2019) 161-174. |
[31] | Z. Shi, A. Atrens, Corros. Sci. 53 (2011) 226-246. |
[32] | M.C. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50 (2008) 1939-1953. |
[33] | G. Song, A. Atrens, Adv. Eng. Mater. 5 (2003) 837-858. |
[34] | Z.Y. Chen, D. Persson, A. Nazarov, S. Zakipour, D. Thierry, C. Leygraf, J. Electrochem. Soc. 152 (2005) B342-B351. |
[35] | M. Jönsson, D. Persson, D. Thierry, Corros. Sci. 49 (2007) 1540-1558. |
[36] | S. Li, H.A. Khan, L.H. Hihara, H. Cong, J. Li, Corros. Sci. 132 (2018) 300-309. |
[37] | A.D. King, N. Birbilis, J.R. Scully, Electrochim. Acta 121 (2014) 394-406. |
[38] | G. Makar, J. Kruger, J. Electrochem. Soc. 137 (1990) 414-421. |
[39] | D.A. Jones, Principles and Prevention of Corrosion, Macmillan, 1992. |
[40] |
Z. Shi, M. Liu, A. Atrens, Corros. Sci. 52 (2010) 579-588.
DOI URL |
[41] | M. Ascencio, M. Pekguleryuz, S. Omanovic, Corros. Sci. 87 (2014) 489-503. |
[42] | R.C. Zeng, Y. Hu, S.K. Guan, H.Z. Cui, E.H. Han, Corros. Sci. 86 (2014) 171-182. |
[43] | G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, V. Vivier, J. Electrochem. Soc. 154 (2007) C108-C113. |
[44] | G. Baril, N. Pébère, Corros. Sci. 43 (2001) 471-484. |
[45] | N. Pébère, C. Riera, F. Dabosi, Electrochim. Acta 35 (1990) 555-561. |
[46] | F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, A. Atrens, Corros. Sci. 75 (2013) 78-99. |
[47] | T. Zhang, G. Meng, Y. Shao, Z. Cui, F. Wang, Corros. Sci. 53 (2011) 2934-2942. |
[48] | J. McIntyre, T. Dow, Corrosion 48 (1992) 309-319. |
[49] | H. Tian, J. Xin, Y. Li, X. Wang, Z. Cui, Corros. Sci. 158 (2019), 108089. |
[50] | M. Liu, S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, P. Marcus, Corros. Sci. 51 (2009) 1115-1127. |
[51] | J. Chen, J. Dong, J. Wang, E. Han, W. Ke, Corros. Sci. 50 (2008) 3610-3614. |
[52] | L. Wang, T. Shinohara, B.P. Zhang, J. Alloys Compd 485 (2009) 747-752. |
[53] | J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochim. Acta 238 (2017) 156-167. |
[54] | R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, G. Garcés, Corros. Sci. 55 (2012) 301-312. |
[55] | R. Arrabal, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, P. Casajús, G. Garcés, Corrosion 68 (2012) 398-410. |
[56] |
Y. Jang, B. Collins, J. Sankar, Y. Yun, Acta Biomater. 9 (2013) 8761-8770.
URL PMID |
[57] | J. Chen, Y. Song, D. Shan, E.H. Han, Corros. Sci. 65 (2012) 268-277. |
[58] | L.Y. Cui, Y. Hu, R.C. Zeng, Y.X. Yang, D.D. Sun, S.Q. Li, F. Zhang, E.H. Han, J. Mater. Sci. Technol.. 33 (2017) 971-986. |
[59] | M.P. Gomes, I. Costa, N. Pébère, J.L. Rossi, B. Tribollet, V. Vivier, Electrochim. Acta 306 (2019) 61-70. |
[60] | Y. Dou, S. Han, L. Wang, X. Wang, Z. Cui, Corros. Sci. 165 (2020), 108405. |
[61] | Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150 (2019) 218-234. |
[62] | T. Zhang, Y. Li, F. Wang, Corros. Sci. 48 (2006) 1249-1264. |
[63] | J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111 (2016) 288-301. |
[64] | J. Li, Z. Chen, J. Jing, J. Hou, J. Mater. Sci Technol. 41 (2020) 33-42. |
[65] | M. Curioni, F. Scenini, T. Monetta, F. Bellucci, Electrochim. Acta 166 (2015) 372-384. |
[66] | J. Chen, J. Wang, E. Han, J. Dong, W. Ke, Electrochim. Acta 52 (2007) 3299-3309. |
[67] | C.N. Cao, Electrochim. Acta 35 (1990) 831-836. |
[68] | R.D. Armstrong, M. Henderson, J. Electroanal. Chem. 39 (1972) 81-90. |
[1] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[2] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[3] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[4] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[5] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[6] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[7] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[8] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[9] | Liang Wu, Xingxing Ding, Zhicheng Zheng, Aitao Tang, Gen Zhang, Andrej Atrens, Fusheng Pan. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64(0): 66-72. |
[10] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[11] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
[12] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[13] | Zhao-Qi Zhang, Rong-Chang Zeng, Cun-Guo Lin, Li Wang, Xiao-Bo Chen, Dong-Chu Chen. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 41(0): 43-55. |
[14] | Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature [J]. J. Mater. Sci. Technol., 2020, 46(0): 225-236. |
[15] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||