J. Mater. Sci. Technol. ›› 2020, Vol. 37: 46-54.DOI: 10.1016/j.jmst.2019.07.037
• Research Article • Previous Articles Next Articles
Dongjun Wangab*(), Hao Lib, Wei Zhengc
Received:
2019-05-26
Revised:
2019-06-26
Accepted:
2019-07-14
Published:
2020-01-15
Online:
2020-02-10
Contact:
Wang Dongjun
Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J]. J. Mater. Sci. Technol., 2020, 37: 46-54.
Fig. 4. Typical surface morphologies of the oxide scales after oxidation at different temperatures for 120?h: (a1) 873?K for TA15; (a2) 873?K for TiBw/TA15; (b1) 973?K for TA15; (b2) 973?K for TiBw/TA15; (c1) 1023?K for TA15; (c2) 1023?K for TiBw/TA15; (d1) 1073?K for TA15; (d2) 1073?K for TiBw/TA15.
Fig. 5. Images of cross-section for the samples after oxidation and the EDS line scanning results: (a1, a2) 973?K for TA15; (b1, b2) 973?K for TiBw/TA15; (c1, c2) 1023?K for TA15; (d1, d2) 1023?K for TiBw/TA15.
Fig. 6. Plot of ln(ΔM) vs. ln(t) (a) and the Arrhenius plot of parabolic rate constant (kp) for oxidation of the two materials in the temperature range of 973-1073?K (b).
Materials | n | kp (10-3×mg cm-2?h-1) | ||||
---|---|---|---|---|---|---|
973?K | 1023?K | 1073?K | 973?K | 1023?K | 1073?K | |
TA15 | 2.52 | 1.45 | 1.75 | 6.51 | 54.6 | 220 |
TiBw/TA15 | 2.07 | 2.01 | 1.89 | 3.63 | 31.3 | 186 |
Table 1 Rate exponents n and calculated parabolic rate constants kp of the TA15 titanium alloy and TiBw/TA15 composite oxidized in the temperature range of 973-1073?K.
Materials | n | kp (10-3×mg cm-2?h-1) | ||||
---|---|---|---|---|---|---|
973?K | 1023?K | 1073?K | 973?K | 1023?K | 1073?K | |
TA15 | 2.52 | 1.45 | 1.75 | 6.51 | 54.6 | 220 |
TiBw/TA15 | 2.07 | 2.01 | 1.89 | 3.63 | 31.3 | 186 |
Points | Ti | Al | O | Zr | Mo | V | B |
---|---|---|---|---|---|---|---|
A (TA15) | 73.93 | 5.59 | 17.01 | 2.16 | 1.32 | 0.00 | — |
B (TA15) | 75.92 | 5.93 | 15.52 | 1.89 | 0.73 | 0.00 | — |
C (TiBw/TA15) | 74.74 | 5.85 | 16.33 | 1.73 | 1.05 | 0.00 | 0.30 |
D (TiBw/TA15) | 71.85 | 1.87 | 24.23 | 0.78 | 0.89 | 0.11 | 0.27 |
Table 2 EDS analysis results of the TA15 titanium alloy and TiBw/TA15 composite at oxidation temperature 873?K (points shown in Fig. 4(a1) and (a2)).
Points | Ti | Al | O | Zr | Mo | V | B |
---|---|---|---|---|---|---|---|
A (TA15) | 73.93 | 5.59 | 17.01 | 2.16 | 1.32 | 0.00 | — |
B (TA15) | 75.92 | 5.93 | 15.52 | 1.89 | 0.73 | 0.00 | — |
C (TiBw/TA15) | 74.74 | 5.85 | 16.33 | 1.73 | 1.05 | 0.00 | 0.30 |
D (TiBw/TA15) | 71.85 | 1.87 | 24.23 | 0.78 | 0.89 | 0.11 | 0.27 |
Fig. 7. Typical surface morphologies of the oxide scales for TiBw/TA15 composite after oxidation at 1023?K with 2?h (a), 10?h (b), the three-dimensional photograph of the TiBw/TA15 composite (c), the initial stage of oxidation diagram for a network unit (d), the oxidation diagram of cross-section for a network unit (e), and the formation illustration of layered oxide scale (f).
|
[1] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[2] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[3] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[4] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[5] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[6] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[7] | Mattia Biesuz, Theo Saunders, Daoyao Ke, Michael J. Reece, Chungfeng Hu, Salvatore Grasso. A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming [J]. J. Mater. Sci. Technol., 2021, 69(0): 239-272. |
[8] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[9] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[10] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[11] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[12] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[13] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[14] | Chun Li, Chaolong Ren, Yue Ma, Jian He, Hongbo Guo. Effects of rare earth oxides on microstructures and thermo-physical properties of hafnia ceramics [J]. J. Mater. Sci. Technol., 2021, 72(0): 144-153. |
[15] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||