J. Mater. Sci. Technol. ›› 2020, Vol. 51: 79-83.DOI: 10.1016/j.jmst.2020.02.039
• Letter • Previous Articles Next Articles
Shun Zhanga,b, Yong Suna, Ruizhi Wub, Xiang Wangb,*(), Xiao-Bo Chenc, Carlos Fernandezd, Qiuming Penga,**()
Received:
2019-11-18
Revised:
2019-12-27
Accepted:
2020-02-18
Published:
2020-08-15
Online:
2020-08-11
Contact:
Xiang Wang,Qiuming Peng
Shun Zhang, Yong Sun, Ruizhi Wu, Xiang Wang, Xiao-Bo Chen, Carlos Fernandez, Qiuming Peng. Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys[J]. J. Mater. Sci. Technol., 2020, 51: 79-83.
Fig. 1. Mechanical properties of UHPed LZY801 alloys as a function of processing temperature. (a) Effects of UHP conditions on microhardness. (b) Optical microstructure and XRD patterns. (c) Tensile and (d) compression curves. The insets correspond to macro-size optical photographs.
Fig. 2. Comparison in terms of mechanical properties between UHPed LZY801 alloys and a range of representative Mg-Li-X (alloying elements) alloys prepared by a variety of themal-mechanical treatments.
Fig. 3. TEM characterization of the LYZ801-6 GPa-900 alloy. (a) STEM micrographs of the as-cast LZY801 sample. (b) EDS mapping of Y in (a). (c) SAED pattern of α-Mg. (d) TEM image of the LZY801-6 GPa-900 observed along [11 112-0 0] axis. A randomly particle in the matrix is marked by a red arrow. (e) Atomic-level image of coherent contraction twin boundary. (f) High magnification image of the particle in (d). (g) Local atomic-level magnified region as marked in (f).
Fig. 4. Strengthening mechanisms in the LZY801-6 GPa-1200 alloy. (a) TEM image with an inset corresponding to the spacing distribution SFs derived from statistical calculations of 50 random results. (b) Corresponding SAED patterns, where crystal planes and SFs (streaking pattern) are marked. (c) Atomic level image of SFs in (a).
[1] | X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol., 34(2018), pp. 245-247. |
[2] | T.M. Pollock , Science, 328(2010), pp. 986-987. |
[3] | W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry , Nat. Mater., 14(2015), p. 1229. |
[4] | X.Y. Li, Y.J. Wei, L. Lu, K. Lu, H.J. Gao , Nature, 464(2010), pp. 877-880. |
[5] | P. Cizek, M.R. Barnett , Scr. Mater., 59(2008), pp. 959-962. |
[6] | H. Fu, B.C. Ge, Y.C. Xin, R.Z. Wu, C. Fernandez, J.Y. Huang, Q.M. Peng , Nano. Lett., 17(2017), pp. 6117-6124. |
[7] | Q.M. Peng, Y. Sun, B.C. Ge, H. Fu, Q. Zu, X.Z. Tang, J.Y. Huang , Acta. Mater., 169(2019), pp. 36-44. |
[8] | J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang , Science, 340(2013), pp. 957-960. |
[9] | B. Ahn, A.P. Zhilyaev, H.-J. Lee, M. Kawasaki, T.G. Langdon, Mat. Sci. Eng. A, 635(2015), pp. 109-117. |
[10] | C.J. Shuai, W.J. Yang, Y.W. Yang, C.D. Gao, C.X. He, H. Pan , Int. J. Bioprint., 5(2019), p. 49. |
[11] | G.Y. Sha, X.G. Sun, T. Liu, Y.H. Zhu, T. Yu, J. Mater. Sci. Technol., 27(2011), pp. 753-758. |
[12] | D.K. Xu, T.T. Zu, M. Yin, Y.B. Xu, E.H. Han, J. Alloys. Compd., 582(2014), pp. 161-166. |
[13] | T.L. Zhu, J.F. Sun, C.L. Cui, R.Z. Wu, S. Betsofen, Z. Leng, J.H. Zhang, M.L. Zhang , Mater. Sci. Eng. A, 600(2014), pp. 1-7. |
[14] | M.L. Zhang, R.Z. Wu, T. Wang, J. Mater. Sci., 44(2009), pp. 1237-1240. |
[15] | C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, R.Z. Wu, E.H. Han, J. Mater. Sci. Technol., 35(2019), pp. 2477-2484. |
[16] | Y. Tang, W.T. Jia, X. Liu, Q.C. Le, Y.L. Zhang , Mat. Sci. Eng. A, 675(2016), pp. 55-64. |
[17] | Y. Yang, X.M. Xiong, J.F. Su, X.D. Peng, H.M. Wen, G.B. Wei, F.S. Pan, E.J. Lavernia, J. Alloys. Compd., 750(2018), pp. 696-705. |
[18] | M. Karami, R. Mahmudi , Mat. Sci. Eng. A, 607(2014), pp. 512-520. |
[19] | R.Z. Wu, Z.K. Qu, M.L. Zhang , Rev. Adv. Mater. Sci., 24(2010), pp. 35-43. |
[20] | C.O. Muga, H. Guo, S.S. Xu, Z.W. Zhang , Mater. Sci. Eng. A, 689(2017), pp. 195-202. |
[21] | M. Fornasini, J. Less-Common. Met., 25(1971), pp. 329-332. |
[1] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[2] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[3] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[4] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[5] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[6] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[7] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[8] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[9] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[10] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[11] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[12] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[13] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[14] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[15] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||