Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 209-213    DOI: 10.1016/j.jmst.2017.11.032
Orginal Article Current Issue | Archive | Adv Search |
Impact of friction stir welding on recrystallization of oxide dispersion strengthened ferritic steel
Wentuo Hanab*(), Pingping Liua, Xiaoou Yia, Qian Zhana, Farong Wana, Kiyohiro Yabuuchib, Hisashi Serizawac, Akihiko Kimurab
a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
b Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
c Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka, 567-0047, Japan
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxide dispersion strengthened (ODS) steels can be used as the structural materials in the future fusion reactors and the fuel cladding materials in the advanced fission reactors. However, the weldability of ODS steels is a severe problem. In the present study, defect-free joints of the 15Cr-ODS ferritic steel were achieved by friction stir welding at different rotation speeds. The recrystallization, hardness and tensile properties are highly related with the rotation speed of the stir tool. The higher rotation speed results in coarser grains in the top SZ, while the grain size exhibits more complicated relation with the rotation speed in the SZ center. The joint welded at 250 rpm exhibits a maximum tensile strength of 974 MPa that reaches about 84% of that of the base metal.

Key words:  ODS ferritic steel      Friction stir welding      Recrystallization behavior      Electron backscatter diffraction      Vickers hardness     
Received:  01 April 2017     
Corresponding Authors:  Han Wentuo     E-mail:  hanwentuo@hotmail.com

Cite this article: 

Wentuo Han, Pingping Liu, Xiaoou Yi, Qian Zhan, Farong Wan, Kiyohiro Yabuuchi, Hisashi Serizawa, Akihiko Kimura. Impact of friction stir welding on recrystallization of oxide dispersion strengthened ferritic steel. J. Mater. Sci. Technol., 2018, 34(1): 209-213.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.11.032     OR     https://www.jmst.org/EN/Y2018/V34/I1/209

Material C Cr W Ti Y2O3 Fe
15 Cr-ODS 0.02 14.9 1.9 0.2 0.34 Bal
Table 1  Chemical compositions of the 15Cr-ODS ferritic steel (wt%).
Fig. 1.  Specimen for tensile tests: (a) specimen dimension; (b) cutting position of specimen in welded joint.
Fig. 2.  Hardness distribution in the joint welded at different rotational speeds: (a) 250 rpm; (b) 300 rpm; (c) 350 rpm; (d) 400 rpm.
Fig. 3.  SEM observations in the joint welded at 300 rpm: (a) base metal; (b) stir zone.
Fig. 4.  EBSD observations in the joint welded at 300 rpm: (a) base metal; (b) stir zone.
Fig. 5.  Grain morphology of the top stir zone.
Fig. 6.  Grain morphology of the stir zone center.
Fig. 7.  Tensile properties tested at room temperature: (a) stress-strain curves; (b) plotted data of the ultimate tensile strength (UTS) and total elongation.
[1] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H.Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F.Abe, J. Nucl. Mater. 417(2011) 176-179.
[2] A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Nat. Mater. 10(2011) 922-926.
[3] W. Han, K. Yabuuchi, A. Kimura, S. Ukai, N. Oono, T. Kaito, T. Torimaru, S.Hayashi, Nucl. Mater. Energy 9 (2016) 610-615.
[4] W. Han, S. Ukai, F. Wan, Y. Sato, B. Leng, H. Numata, N. Oono, S. Hayashi, Q.Tang, Y. Sugino, Mater. Trans. 53(2012) 390-394.
[5] A. Kimura, W. Han, H. jE, K.Yabuuchi, R. Kasada, Plasma. Fusion. Res. 11(2016) 1-8.
[6] F. Legendre, S. Poissonnet, P. Bonnaillie, L. Boulanger, L. Forest, J. Nucl. Mater.386(2009) 537-539.
[7] B. Baker, T. McNelley, L. Brewer, Mater. Sci. Eng. A 589 (2014) 217-227.
[8] H. Lemmen, K. Sudmeijer, I. Richardson, S. Van Der Zwaag, J.Mater. Sci. 42(2007) 5286-5295.
[9] W. Han, A. Kimura, N. Tsuda, H. Serizawa, D. Chen, H. Je, H. Fujii, Y. Ha, Y.Morisada, H. Noto, J. Nucl. Mater. 455(2014) 46-50.
[10] W. Han, F. Wan, B. Leng, S. Ukai, Q. Tang, S. Hayashi, J. He, Y. Sugino, Sci. Tech.Weld. Join. 16(2011) 690-696.
[11] B.W. Baker, E.S.K. Menon, T.R. McNelley, L.N. Brewer, B. El-Dasher, J.C. Farmer,S.G. Torres, M.W. Mahoney, S. Sanderson, Metall. Mater. Trans. E 1 (2014)318-330.
[12] B.W. Baker, L.N. Brewer, E.S.K. Menon, T.R. McNelley, B. El-Dasher, S. Torres,J.C. Farmer, M.W. Mahoney, S. Sanderson, in: R. Mishra, M.W. Mahoney, Y.Sato, Y. Hovanski, R. Verma (Eds.), Friction Stir Welding and Processing VII,Springer International Publishing, Cham, 2016, pp. 127-138.
[13] W. Han, D. Chen, Y. Ha, A. Kimura, H. Serizawa, H. Fujii, Y. Morisada, Scripta.Mater. 105(2015) 2-5.
[14] W. Wang, R.S. Mishra, I. Charit, J. Nucl. Mater. 432(2013) 274-280.
[15] B. Baker, L. Brewer, JOM 66 (2014) 2442-2457.
[16] M. Ghosh, K. Kumar, R. Mishra, Scripta. Mater. 63(2010) 851-854.
[17] S. Sulaiman, S. Emamian, M.N. Sheikholeslam, M. Mehrpouya, Inter. J. Mater.Mech. Manuf. 1(2013) 185-187.
[18] M. Chiumenti, M. Cervera, C.A. de Saracibar, N.Dialami, Comput. Method.Appl M. 254(2013) 353-369.
[19] E. Raouache, Z. Driss, M. Guidara, F. Khalfallah, Inter. J. Mech. Appl. 6(2016)1-7.
[20] L. Fratini, G. Buffa, Int. J. Mach. Tool. Manu. 45(2005) 1188-1194.
[21] G. Buffa, L. Fratini, R. Shivpuri, J. Mater. Process.Tech. 191(2007) 356-359.
[1] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[2] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[3] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[4] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[5] Yang Shen, Ju Leng, Cong Wang. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding[J]. 材料科学与技术, 2019, 35(8): 1747-1752.
[6] Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding[J]. 材料科学与技术, 2019, 35(7): 1261-1269.
[7] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[8] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method[J]. 材料科学与技术, 2019, 35(7): 1412-1421.
[9] Ming-Song Chen, Zong-Huai Zou, Y.C. Lin, Hong-Bin Li, Guan-Qiang Wang. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method[J]. 材料科学与技术, 2019, 35(7): 1403-1411.
[10] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. 材料科学与技术, 2019, 35(6): 972-981.
[11] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[12] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites[J]. 材料科学与技术, 2019, 35(5): 824-832.
[13] M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel[J]. 材料科学与技术, 2019, 35(4): 491-498.
[14] Zhongwei Ma, Yanye Jin, Shude Ji, Xiangchen Meng, Lin Ma, Qinghua Li. A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding[J]. 材料科学与技术, 2019, 35(1): 94-99.
[15] Chao Zhang, Lei Cui, Yongchang Liu, Chenxi Liu, Huijun Li. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel[J]. 材料科学与技术, 2018, 34(5): 756-766.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.