J. Mater. Sci. Technol. ›› 2022, Vol. 126: 203-214.DOI: 10.1016/j.jmst.2022.01.033
Special Issue: Nano materials 2022
• Research Article • Previous Articles Next Articles
Zhongyou Quea, Zichen Weia, Xingyu Lia, Lin Zhanga,*(
), Yanhao Dongb,*(
), Mingli Qina, Junjun Yanga, Xuanhui Qua, Ju Lib,c,*(
)
Accepted:2022-04-08
Published:2022-11-01
Online:2022-11-10
Contact:
Lin Zhang,Yanhao Dong,Ju Li
About author:dongyh@mit.edu (Y. Dong),Zhongyou Que, Zichen Wei, Xingyu Li, Lin Zhang, Yanhao Dong, Mingli Qin, Junjun Yang, Xuanhui Qu, Ju Li. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum[J]. J. Mater. Sci. Technol., 2022, 126: 203-214.
Fig. 1. SEM images showing the morphology of (a) the raw and (b) sieved W-10Re powders, and (c) W-10Re powders’ particle size distributions, and SEM images of (d) the raw and (e) sieved Mo powders, and (f) Mo powders’ particle size distributions. Note y axis in (c) and (f) shows the accumulative volume fraction in the unit of vol%.
Fig. 2. Microstructures (fracture surfaces) of the raw-powder derived W-10Re samples sintered at (a) 900 °C, (b) 1300 °C, and (c) 1500 °C without holding, and the sieved-powder derived W-10Re samples sintered at (d) 900 °C, (e) 1300 °C, and (f) 1500 °C without holding.
Fig. 3. (a) Relative density, (b) average grain size, and (c) sintering rate dρ/dt of the raw-powder (in red) and sieved-powder (in blue) derived W-10Re samples in constant-sintering-rate experiments up to 1500 °C.
| Sintering conditions | Raw powders | Sieved powders | ||
|---|---|---|---|---|
| ρ (%) | Gavg (nm) | ρ (%) | Gavg (nm) | |
| 900 °C for 0 h | 54 | 98 | 54 | 73 |
| 1000 °C for 0 h | 56 | 120 | 55 | 82 |
| 1050 °C for 0 h | 59 | 150 | 57 | 95 |
| 1100 °C for 0 h | 61 | 180 | 59 | 120 |
| 1150 °C for 0 h | 66 | 190 | 71 | 160 |
| 1200 °C for 0 h | 72 | 230 | 78 | 210 |
| 1250 °C for 0 h | 77 | 300 | 84 | 310 |
| 1300 °C for 0 h | 82 | 350 | 88 | 340 |
| 1350 °C for 0 h | 85 | 680 | 93 | 510 |
| 1400 °C for 0 h | 92 | 750 | 95.0 | 560 |
| 1500 °C for 0 h | 95.2 | 1290 | 98.1 | 1160 |
| 1200 °C for 0 h, 1100 °C for 10 h | 80 | 250 | 82 | 240 |
| 1200 °C for 0 h, 1150 °C for 10 h | 92 | 300 | 98.4 | 260 |
| 1230 °C for 0 h, 1150 °C for 10 h | 94 | 350 | 98.6 | 310 |
| 1250 °C for 0 h, 1150 °C for 10 h | 97.4 | 470 | 99.6 | 400 |
| 1300 °C for 0 h, 1200 °C for 10 h | 99.0 | 550 | 99.5 | 530 |
Table 1. Sintering data of W-10Re from constant-heat-rate sintering and two-step sintering.
| Sintering conditions | Raw powders | Sieved powders | ||
|---|---|---|---|---|
| ρ (%) | Gavg (nm) | ρ (%) | Gavg (nm) | |
| 900 °C for 0 h | 54 | 98 | 54 | 73 |
| 1000 °C for 0 h | 56 | 120 | 55 | 82 |
| 1050 °C for 0 h | 59 | 150 | 57 | 95 |
| 1100 °C for 0 h | 61 | 180 | 59 | 120 |
| 1150 °C for 0 h | 66 | 190 | 71 | 160 |
| 1200 °C for 0 h | 72 | 230 | 78 | 210 |
| 1250 °C for 0 h | 77 | 300 | 84 | 310 |
| 1300 °C for 0 h | 82 | 350 | 88 | 340 |
| 1350 °C for 0 h | 85 | 680 | 93 | 510 |
| 1400 °C for 0 h | 92 | 750 | 95.0 | 560 |
| 1500 °C for 0 h | 95.2 | 1290 | 98.1 | 1160 |
| 1200 °C for 0 h, 1100 °C for 10 h | 80 | 250 | 82 | 240 |
| 1200 °C for 0 h, 1150 °C for 10 h | 92 | 300 | 98.4 | 260 |
| 1230 °C for 0 h, 1150 °C for 10 h | 94 | 350 | 98.6 | 310 |
| 1250 °C for 0 h, 1150 °C for 10 h | 97.4 | 470 | 99.6 | 400 |
| 1300 °C for 0 h, 1200 °C for 10 h | 99.0 | 550 | 99.5 | 530 |
Fig. 4. Microstructures (fracture surfaces) of the raw-powder derived Mo samples sintered at (a) 900 °C, (b) 1100 °C, and (c) 1300 °C without holding, and the sieved-powder derived W-10Re samples sintered at (d) 900 °C, (e) 1100 °C, and (f) 1300 °C without holding.
Fig. 5. (a) Relative density, (b) average grain size, and (c) sintering rate dρ/dt of the raw-powder (in red) and sieved-powder (in blue) derived Mo samples in constant-sintering-rate experiments up to 1400 °C.
| Sintering conditions | Raw powders | Sieved powders | ||
|---|---|---|---|---|
| ρ (%) | Gavg (nm) | ρ (%) | Gavg (nm) | |
| 900 °C for 0 h | 61 | 67 | 62 | 58 |
| 1000 °C for 0 h | 68 | 80 | 65 | 68 |
| 1050 °C for 0 h | 72 | 96 | 67 | 79 |
| 1100 °C for 0 h | 75 | 140 | 73 | 110 |
| 1150 °C for 0 h | 78 | 180 | 76 | 130 |
| 1200 °C for 0 h | 84 | 460 | 85 | 220 |
| 1250 °C for 0 h | 88 | 1130 | 90 | 340 |
| 1300 °C for 0 h | 91 | 2250 | 94 | 580 |
| 1350 °C for 0 h | 93 | 3050 | 95.4 | 950 |
| 1400 °C for 0 h | 95.2 | 4170 | 97.3 | 1750 |
| 1100 °C for 0.5 h, 1050 °C for 10 h | / | / | 85 | 160 |
| 1130 °C for 0.5 h, 1030 °C for 10 h | / | / | 89 | 180 |
| 1100 °C for 0.5h, 1050 °C for 10 h | / | / | 95.2 | 250 |
| 1120 °C for 0.5 h, 1070 °C for 10 h | 92 | 490 | 98.3 | 290 |
| 1150 °C for 0 h, 1100 °C for 10 h | / | / | 98.5 | 850 |
Table 2. Sintering data of Mo from constant-heat-rate sintering and two-step sintering.
| Sintering conditions | Raw powders | Sieved powders | ||
|---|---|---|---|---|
| ρ (%) | Gavg (nm) | ρ (%) | Gavg (nm) | |
| 900 °C for 0 h | 61 | 67 | 62 | 58 |
| 1000 °C for 0 h | 68 | 80 | 65 | 68 |
| 1050 °C for 0 h | 72 | 96 | 67 | 79 |
| 1100 °C for 0 h | 75 | 140 | 73 | 110 |
| 1150 °C for 0 h | 78 | 180 | 76 | 130 |
| 1200 °C for 0 h | 84 | 460 | 85 | 220 |
| 1250 °C for 0 h | 88 | 1130 | 90 | 340 |
| 1300 °C for 0 h | 91 | 2250 | 94 | 580 |
| 1350 °C for 0 h | 93 | 3050 | 95.4 | 950 |
| 1400 °C for 0 h | 95.2 | 4170 | 97.3 | 1750 |
| 1100 °C for 0.5 h, 1050 °C for 10 h | / | / | 85 | 160 |
| 1130 °C for 0.5 h, 1030 °C for 10 h | / | / | 89 | 180 |
| 1100 °C for 0.5h, 1050 °C for 10 h | / | / | 95.2 | 250 |
| 1120 °C for 0.5 h, 1070 °C for 10 h | 92 | 490 | 98.3 | 290 |
| 1150 °C for 0 h, 1100 °C for 10 h | / | / | 98.5 | 850 |
Fig. 6. Arrhenius plot of DGB and calculated Ea using (a) Johnson's method and (b) Herring's method. Dash lines are linear fitting results of the corresponding data points. Linear fitting parameter R2 is 0.940 for W, 0.950 for W-10Re, and 0.973 for Mo in (a) and 1.000 for W, 0.812 for W-10Re, and 0.987 for Mo in (b).
Fig. 7. Fracture surfaces of (a, b) the sieved-powder derived W-10Re sample two-step sintered at T1=1200 °C for 0 h and T2=1150 °C for 10 h, and (c, d) the raw-powder derived W-10Re samples two-step sintered at T1=1300 °C for 0 h and T2=1200 °C for 10 h.
Fig. 8. Fracture surfaces of (a, b) the sieved-powder and (c, d) raw-powder derived Mo samples two-step sintered at T1=1120 °C for 0.5 h and T2=1070 °C for 10 h.
Fig. 9. EBSD results of (a-d) the sieved-powder derived W-10Re sample two-step sintered at T1=1200 °C for 0 h and T2=1150 °C for 10 h, (e-h) the raw-powder derived W-10Re sample two-step sintered at T1=1300 °C for 0 h and T2=1200 °C for 10 h, and (i-l) the raw-powder derived W-10Re sample sintered at 1500 °C for 0 h. (a, e, i) Inverse pole figure map, (b, f, j) normalized grain size distribution, (c, g, k) distributions of grain boundary misorientation angles (dash lines: Mackenzie's distribution for randomly oriented cubic grains [56]), and (d, h, l) pore figures.
Fig. 10. EBSD results of (a-d) the sieved-powder derived Mo sample two-step sintered at T1=1120 °C for 0.5 h and T2=1070 °C for 10 h, (e-h) the raw-powder derived Mo sample two-step sintered at T1=1120 °C for 0.5 h and T2=1070 °C for 10 h, and (i-l) the raw-powder derived Mo sample sintered at 1300 °C for 0.5 h. (a, e, i) Inverse pole figure map, (b, f, j) normalized grain size distribution, (c, g, k) distributions of grain boundary misorientation angles (dash lines: Mackenzie's distribution for randomly oriented cubic grains [56]), and (d, h, l) pore figures.
Fig. 11. (a) Weibull distribution of Vickers hardness for the sieved-powder derived W-10Re sample two-step sintered at T1=1200 °C for 0 h and T2=1150 °C for 10 h (abbreviated as “sieved W-10 Re, TSS” in blue), the raw-powder derived W-10Re sample two-step sintered at T1=1300 °C for 0 h and T2=1200 °C for 10 h (abbreviated as “raw W-10Re, TSS” in red), and the raw-powder derived W-10Re sample sintered at 1500 °C for 0 h (abbreviated as “raw W-10Re, NS” in black). (b) Comparison of our hardness data with the literature reports [[57], [58], [59], [60], [61]].
Fig. 12. (a) Weibull distribution of Vickers hardness for the sieved-powder derived Mo sample two-step sintered at T1=1120 °C for 0.5 h and T2=1070 °C for 10 h (abbreviated as “sieved Mo, TSS” in blue), the raw-powder derived Mo sample two-step sintered at T1=1120 °C for 0.5 h and T2=1070 °C for 10 h (abbreviated as “raw Mo, TSS” in red), and the raw-powder derived Mo sample sintered at 1300 °C for 0.5 h (abbreviated as “raw Mo, NS” in black). (b) Comparison of our hardness data with the literature reports [30,32,33,45,62].
| [1] | Z.Z. Fang, H. Wang, V. Kumar, Int. J. Refract. Met. Hard Mater., 62 (2017), pp. 110-117. |
| [2] | Y. Dong, H. Yang, L. Zhang, X. Li, D. Ding, X. Wang, J. Li, J. Li, I.W. Chen, Adv. Funct. Mater., 31 (2021), pp. 1-9. |
| [3] | X. Li, L. Zhang, Y. Dong, R. Gao, M. Qin, X. Qu, J. Li, Acta Mater, 186 (2020), pp. 116-123. |
| [4] | X. Li, L. Zhang, Y. Dong, M. Qin, Z. Wei, Z. Que, J. Yang, X. Qu, J. Li, Acta Mater, 220 (2021). |
| [5] | A. Hasegawa, M. Fukuda, K. Yabuuchi, S. Nogami, J. Nucl. Mater., 471 (2016), pp. 175-183. |
| [6] | S. Wurster, B. Gludovatz, R. Pippan, Int. J. Refract. Met. Hard Mater., 28 (2010), pp. 692-697. |
| [7] | T. Tanabe, C. Eamchotchawalit, C. Busabok, S. Taweethavorn, M. Fujitsuka, T. Shikama, Mater. Lett., 57 (2003), pp. 2950-2953. |
| [8] | A. Taran, D. Voronovich, S. Plankovskyy, V. Paderno, V. Filipov, Electron. Dev., 56 (2009), pp. 812-817. |
| [9] | D. Scheiber, R. Pippan, P. Puschnig, A. Ruban, L. Romaner, Int. J. Refract. Met. Hard Mater., 60 (2016), pp. 75-81. |
| [10] | B.V. Petukhov, Crystallogr. Rep., 52 (2007), pp. 112-122. |
| [11] | W. Setyawan, R.J. Kurtz, Scr. Mater., 66 (2012), pp. 558-561. |
| [12] | R. Kirchheim, Scr. Mater., 67 (2012), pp. 767-770. |
| [13] | S. Miao, Z.M. Xie, R. Lin, Q.F. Fang, J.H. Tan, Y.Q. Zhao, Metals, 10 (2020), p. 277. |
| [14] | E. Oda, K. Ameyama, S. Yamaguchi, Mater.Sci. Forum, 503-504 (2006), pp. 573-578. |
| [15] | C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Refract. Met.Hard Mater., 75 (2018), pp. 170-183. |
| [16] | W. Hu, Z. Dong, L. Yu, Z. Ma, Y. Liu, J. Mater. Sci. Technol., 36 (2020), pp. 84-90. |
| [17] | Z. Dong, N. Liu, W. Hu, Z. Ma, C. Li, C. Liu, Q. Guo, Y. Liu, J. Mater. Sci. Technol., 36 (2020), pp. 118-127. |
| [18] | Q. Zhou, J. Zhao, J.Y. Xie, F. Wang, P. Huang, T.J. Lu, K.W. Xu, Mater.Sci. Eng. A, 608 (2014), pp. 184-189. |
| [19] | L.J. Kecskes, K.C. Cho, R.J. Dowding, B.E. Schuster, R.Z. Valiev, Q. Wei, Mater.Sci. Eng. A, 467 (2007), pp. 33-43. |
| [20] | Z. Chen, M. Qin, J. Yang, L. Zhang, B. Jia, X. Qu, J. Mater. Sci. Technol., 58 (2020), pp. 24-33. |
| [21] | E.R. Onainor, Ninla Elmawati Falabiba, 1 (2019), pp. 12-47. |
| [22] | N. na Qiu, Y. Zhang, C. Zhang, H. Tong, X.P. Song, Int. J. Miner. Metall. Mater., 25 (2018), pp. 1055-1059 |
| [23] | S. Pramanik, A.K. Srivastav, B. Manuel Jolly, N. Chawake, B.S. Murty, Adv. Powder Technol., 30 (2019), pp. 2779-2786. |
| [24] | E.Y. Ivanov, C. Suryanarayana, B.D. Bryskin, Mater.Sci. Eng. A, 251 (1998), pp. 255-261. |
| [25] | C. Lai, J. Wang, F. Zhou, W. Liu, N. Miao, J. Alloys Compd., 735 (2018), pp. 2685-2693. |
| [26] | G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater., 12 (2013), pp. 344-350. |
| [27] | G.S. Kim, Y.J. Lee, D.G. Kim, Y. Do Kim, J. Alloys Compd., 454 (2008), pp. 327-330. |
| [28] | W. Hu, T. Sun, C. Liu, L. Yu, T. Ahamad, Z. Ma, J. Mater. Sci. Technol., 88 (2021), pp. 36-44. |
| [29] | T. Takida, H. Kurishita, M. Mabuchi, T. Igarashi, Y. Doi, T. Nagae, Mater. Trans., 45 (2004), pp. 143-148. |
| [30] | C. Cui, Y. Gao, S. Wei, G. Zhang, Y. Zhou, X. Zhu, S. Guo, Appl. Phys. A: Mater. Sci. Process., 122 (2016), p. 214 |
| [31] | J.L. Johnson, Sinter. Adv. Mater. (2010), pp. 356-388. |
| [32] | G.S. Kim, H.G. Kim, D.G. Kim, S.T. Oh, M.J. Suk, Y. Do Kim, J. Alloys Compd., 469 (2009), pp. 401-405. |
| [33] | P. Hu, T. Chen, X. Li, J. Gao, S. Chen, W. Zhou, J. Wang, Int. J. Refract. Met. Hard Mater., 83 (2019). |
| [34] | M. Qin, Z. Chen, P. Chen, S. Zhao, R. Li, J. Ma, X. Qu, Int. J. Refract. Met. Hard Mater., 68 (2017), pp. 145-150. |
| [35] | S. Gu, M. Qin, H. Zhang, J. Ma, X. Qu, Int. J. Refract. Met. Hard Mater., 76 (2018), pp. 90-98. |
| [36] | C. Compounds, Choice Rev. Online., 37 (2000), pp. 37-2788. |
| [37] | K.L. Jiao, L.H. Chang, R. Wallace, W.A. Anderson, Appl. Supercond., 3 (1995), pp. 55-60. |
| [38] | T.S. Srivatsan, B.G. Ravi, M. Petraroli, T.S. Sudarshan, Int. J. Refract. Met. Hard Mater., 20 (2002), pp. 181-186. |
| [39] | M. Broniatowski, J. Stat. Plan. Inference., 35 (1993), pp. 349-365. |
| [40] | D.L. Johnson, J. Appl. Phys., 40 (1969), pp. 192-200. |
| [41] | W.S. YOUNG, I.B. CUTLER, J. Am. Ceram. Soc., 53 (1970), pp. 659-663. |
| [42] | D. Scheiber, R. Pippan, P. Puschnig, L. Romaner, Model. Simul. Mater. Sci. Eng., 24 (2016), Article 085009. |
| [43] | C. Herring, J. Appl. Phys., 301 (1950), pp. 4-7. |
| [44] | J.D. Hansen, R.P. Rusin, M. Teng, D.L. Johnson, J. Am. Ceram. Soc., 75 (1992), pp. 1129-1135. |
| [45] | S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, I.G. Sharma, Acta Mater, 57 (2009), pp. 4158-4168. |
| [46] | N.C. Kothari, J. Less-Common Met., 5 (1963), pp. 140-150. |
| [47] | R.M. German, Z.A. Munir, Metall. Trans. A, 7 (1976), pp. 1873-1877. |
| [48] | A.K. Srivastav, M. Sankaranarayana, B.S. Murty, Metall. Mater. Trans. A, 42 (2011), pp. 3863-3866. |
| [49] | T. Vasilos, J.T. Smith, J. Appl. Phys., 35 (1964), pp. 215-217. |
| [50] | I.W. Chen, X.H. Wang, Nature, 404 (2000), pp. 168-171. |
| [51] | X.H. Wang, P.L. Chen, I.W. Chen, J. Am. Ceram. Soc., 89 (2006), pp. 431-437. |
| [52] | X.H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, I.W. Chen, J. Am. Ceram. Soc., 89 (2006), pp. 438-443. |
| [53] | H. Yang, L. Li, Y. Li, B. Shen, Y. Kang, L. Zhao, J. Li, Y. Dong, J. Li, J. Materiomics, 7 (2021), pp. 837-844. |
| [54] | H. Yang, L. Li, W. Cao, Y. Liu, M. Mukhtar, L. Zhao, Y. Kang, Y. Dong, J. Li, J. Eur. Ceram. Soc., 40 (2020), pp. 1505-1512. |
| [55] | Y. Dong, I.W. Chen, J. Am. Ceram. Soc., 101 (2018), pp. 1857-1869. |
| [56] | J.K. Mackenzie, M.J. Thomson, Biometrika, 44 (1957), p. 205. |
| [57] | D.E.J. Armstrong, T.B. Britton, Mater.Sci. Eng. A, 611 (2014), pp. 388-393. |
| [58] | D.E.J. Armstrong, X. Yi, E.A. Marquis, S.G. Roberts, J. Nucl. Mater., 432 (2013), pp. 428-436. |
| [59] | J. Schneider, J. Terrell, L. Farris, D. Tucker, T. Leonhardt, H. Goldbeck, Metall. Mater. Trans. B, 51 (2020), pp. 35-44. |
| [60] | M. Siller, J. Schatte, S. Gerzoskovitz, W. Knabl, R. Pippan, H. Clemens, V. Maier-Kiener, Int. J. Refract. Met. Hard Mater., 92 (2020), Article 105285. |
| [61] | J. Kappacher, A. Leitner, D. Kiener, H. Clemens, V. Maier-Kiener, Mater. Des., 189 (2020), Article 108499. |
| [62] | Y. Kim, S. Lee, J.W. Noh, S.H. Lee, I.D. Jeong, S.J. Park, Int. J. Refract. Met. Hard Mater., 41 (2013), pp. 442-448. |
| [1] | Yu Pan, Jinshan Zhang, Jianzhuo Sun, Yanjun Liu, Ce Zhang, Rui Li, Fan Kuang, Xinxin Wu, Xin Lu. Enhanced strength and ductility in a powder metallurgy Ti material by the oxygen scavenger of CaB6 [J]. J. Mater. Sci. Technol., 2023, 137(0): 132-142. |
| [2] | Jing Peng, Jia Li, Bin Liu, Jian Wang, Haotian Chen, Hui Feng, Xin Zeng, Heng Duan, Yuankui Cao, Junyang He, Peter K. Liaw, Qihong Fang. Formation process and mechanical properties in selective laser melted multi-principal-element alloys [J]. J. Mater. Sci. Technol., 2023, 133(0): 12-22. |
| [3] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
| [4] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
| [5] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
| [6] | Juhua Luo, Ziyang Dai, Mengna Feng, Xiaowen Chen, Caihong Sun, Ying Xu. Hierarchically porous carbon derived from natural Porphyra for excellent electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 129(0): 206-214. |
| [7] | Yonggang Fan, Kenan Li, Haodong Li, Cong Wang. Profiling interfacial reaction features between diamond and Cu-Sn-Ti active filler metal brazed at 1223 K [J]. J. Mater. Sci. Technol., 2022, 131(0): 100-105. |
| [8] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
| [9] | Qinyang Zhao, Leandro Bolzoni, Yongnan Chen, Yiku Xu, Rob Torrens, Fei Yang. Processing of metastable beta titanium alloy: Comprehensive study on deformation behaviour and exceptional microstructure variation mechanisms [J]. J. Mater. Sci. Technol., 2022, 126(0): 22-43. |
| [10] | X.B. Meng, J.G. Li, C.N. Jing, J.D. Liu, S.Y. Ma, J.J. Liang, C.W. Zhang, M. Wang, B.T. Tang, T. Lin, J.L. Chen, X.L. Zhang, Q. Li. Misorientation dependent thermal condition-solute field cooperative effect on competitive grain growth in the converging case during directional solidification of a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 151-159. |
| [11] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
| [12] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
| [13] | Hoon Sohn, Peipei Liu, Hansol Yoon, Kiyoon Yi, Liu Yang, Sangjun Kim. Real-time porosity reduction during metal directed energy deposition using a pulse laser [J]. J. Mater. Sci. Technol., 2022, 116(0): 214-223. |
| [14] | P.-C. Zhao, B. Guan, Y.-G. Tong, R.-Z. Wang, X. Li, X.-C. Zhang, S.-T Tu. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure [J]. J. Mater. Sci. Technol., 2022, 109(0): 54-63. |
| [15] | Wen Zhang, Lei Chen, Chenguang Xu, Xuming Lv, Yujin Wang, Jiahu Ouyang, Yu Zhou. Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering [J]. J. Mater. Sci. Technol., 2022, 110(0): 57-64. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
