J. Mater. Sci. Technol. ›› 2022, Vol. 108: 54-63.DOI: 10.1016/j.jmst.2021.07.041
• Research Article • Previous Articles Next Articles
Bang Xiaoa,b, Wenpeng Jiab,*(), Huiping Tangb,*(
), Jian Wangb, Lian Zhoua,b
Received:
2021-06-07
Revised:
2021-07-15
Accepted:
2021-07-16
Published:
2021-10-07
Online:
2021-10-07
Contact:
Wenpeng Jia,Huiping Tang
About author:
hptang@c-nin.com (H. Tang).Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting[J]. J. Mater. Sci. Technol., 2022, 108: 54-63.
Fig. 2. (a) Schematic diagram of defocus distance and formed samples (XOY surface) with scanning speeds of (b) 4.0 m/s, (c) 3.5 m/s, (d) 3.0 m/s, (e) 2.5 m/s.
Scanning rate (m/s) | W | Mo | Ta | Nb | Ti |
---|---|---|---|---|---|
4.0 | 23.41 | 21.82 | 21.21 | 19.71 | 13.85 |
3.5 | 22.93 | 23.01 | 21.01 | 19.66 | 13.39 |
3.0 | 23.24 | 23.40 | 21.05 | 20.31 | 12.00 |
2.5 | 23.45 | 22.66 | 22.04 | 18.84 | 13.01 |
Table 1. Chemical composition (at.%) of as-deposited WMoTaNbTi RHEAs.
Scanning rate (m/s) | W | Mo | Ta | Nb | Ti |
---|---|---|---|---|---|
4.0 | 23.41 | 21.82 | 21.21 | 19.71 | 13.85 |
3.5 | 22.93 | 23.01 | 21.01 | 19.66 | 13.39 |
3.0 | 23.24 | 23.40 | 21.05 | 20.31 | 12.00 |
2.5 | 23.45 | 22.66 | 22.04 | 18.84 | 13.01 |
Fig. 9. (a, b) Cracking initiation and feeding mechanism, (c) solute redistribution during solidification with complete diffusion in liquid and no diffusion in solid (CL(fS) and CS(fS) are solute concentrations changes with fS).
Fig. 10. Microhardness (a) and the hardness indentation of the WMoTaNbTi RHEAs at scanning speeds of (b) 4.0 m/s, (c) 3.5 m/s, (d) 3.0 m/s and (e) 2.5 m/s.
Fig. 11. Compressive engineering stress-strain curve (a) and fracture morphology (b) of the as-deposited WMoTaNbTi RHEA formed at the scanning speed of 2.5 m/s.
[1] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
[2] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[3] |
M.F. del Grosso, G. Bozzolo, H.O. Mosca, Physica B 407 (2012) 3285-3287.
DOI URL |
[4] |
Y. Zou, P. Okle, H. Yu, T. Sumigawa, T. Kitamura, S. Maiti, W. Steurer, R. Spole- nak, Scr. Mater. 128 (2017) 95-99.
DOI URL |
[5] | H. Dobbelstein, M. Thiele, E.L. Gurevich, E.P. George, A. Ostendorf, Phys. Proce- dia 83 (2016) 624-633. |
[6] |
Y.B.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y.L. Gong, J.W.G. Clark, N. Németh, D.G. McCartney, R.C. Reed, Acta Mater. 202 (2021) 417-436.
DOI URL |
[7] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater Sci. 92 (2018) 112-224.
DOI URL |
[8] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics 84 (2017) 153-157.
DOI URL |
[9] |
Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng. A 712 (2018) 380-385.
DOI URL |
[10] |
J.Y. Pan, T. Dai, T. Lu, X.Y. Ni, J.W. Dai, M. Li, Mater. Sci. Eng. A 738 (2018) 362-366.
DOI URL |
[11] |
U. Bhandari, C.Y. Zhang, S.M. Guo, S.Z. Yang, Int. J. Miner. Metall. Mater. 27 (2020) 1398-1404.
DOI URL |
[12] |
G.X. Zhu, D.C. Li, A.F. Zhang, G. Pi, Y.P. Tang, Opt. Laser Technol. 44 (2012) 349-356.
DOI URL |
[13] |
A. Bahador, E. Hamzah, K. Kondoh, T. Abubakar, F. Yusof, S.N. Saud, M. K. Ibrahim, M.A. Ezazi, Procedia Eng. 184 (2017) 205-213.
DOI URL |
[14] |
T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, Sci. Rep. 6 (2016) 19717.
DOI PMID |
[15] |
T. DebRoy, S.A. David, Rev. Mod. Phys. 67 (1995) 85-112.
DOI URL |
[16] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[17] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[18] |
Y. Zhang, X. Yang, P.K. Liaw, JOM 64 (2012) 830-838.
DOI URL |
[19] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[20] |
H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, Mater. Sci. Eng. A 674 (2016) 203-211.
DOI URL |
[21] |
S.W. McAlpine, J.V. Logan, M.P. Short, Scr. Mater. 191 (2021) 29-33.
DOI URL |
[22] |
D.Z. Wang, Z.M. Wang, K.L. Li, J. Ma, W. Liu, Z.J. Shen, Mater. Des. 162 (2019) 384-393.
DOI URL |
[23] |
D.Z. Wang, C.F. Yu, J. Ma, W. Liu, Z.J. Shen, Mater. Des. 129 (2017) 44-52.
DOI URL |
[24] |
S. Kou, Acta Mater. 88 (2015) 366-374.
DOI URL |
[25] | S. Kou, Welding Metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, 2003. |
[26] | J.C. Lippold, Welding Metallurgy and Weldability, John Wiley and Sons, Hobo- ken, 2014. |
[27] |
R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, J. Phys. D-Appl. Phys. 40 (2007) 5753-5766.
DOI URL |
[28] |
M. Mahmoudi, G. Tapia, B. Franco, J. Ma, R. Arroyave, I. Karaman, A. Elwany, J. Manuf. Process. 35 (2018) 672-680.
DOI URL |
[29] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[30] | J.W. Yeh, Eur. J. Control 31 (2006) 633-648. |
[31] | L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Mas- sachusetts, 1975. |
[32] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, in: High-entropy Alloys Fundamentals and Applications, Springer, Switzerland, 2016, pp. 181-185. |
[33] |
I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater 85 (2015) 14-23.
DOI URL |
[34] |
A. Luo, D.L. Jacobson, K.S. Shin, Int. J. Refract. Met. Hard Mater. 10 (1991) 107-114.
DOI URL |
[35] |
C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, D.S. Easton, Intermetallics 4 (1996) 429-440.
DOI URL |
[36] |
J.H. Luan, Z.B. Jiao, W.H. Liu, Z.P. Lu, W.X. Zhao, C.T. Liu, Mater. Sci. Eng. A 704 (2017) 91-101.
DOI URL |
[37] |
Y. Chen, K. Zhang, J. Huang, S.R.E. Hosseini, Z.G. Li, Mater. Des. 90 (2016) 586-594.
DOI URL |
[38] |
J.J. Xu, X. Lin, P.F. Guo, H.B. Dong, X.L. Wen, Q.G. Li, L. Xue, W.D. Huang, J. Alloy. Compd. 749 (2018) 859-870.
DOI URL |
[39] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[40] |
L. Qi, D.C. Chrzan, Phys. Rev. Lett. 112 (2014) 115503.
DOI URL |
[41] |
Y. Tong, S.J. Zhao, H.B. Bei, T. Egami, Y.W. Zhang, F.X. Zhang, Acta Mater. 183 (2020) 172-181.
DOI URL |
[42] |
J. Zhang, Y.Y. Hu, Q.Q. Wei, Y. Xiao, P.A. Chen, G.Q. Luo, Q. Shen, J. Alloy. Compd. 827 (2020) 154301.
DOI URL |
[43] |
R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Acta Mater. 183 (2020) 64-77.
DOI URL |
[44] |
B.G. Butler, J.D. Paramore, J.P. Ligda, C. Ren, Z.Zak Fang, S.C. Middlemas, K.J. Hemker, Int. J. Refract. Met. Hard Mater. 75 (2018) 248-261.
DOI URL |
[1] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[2] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[3] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[4] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[5] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[6] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[7] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[8] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79(0): 1-14. |
[9] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[10] | Xiaoqi Yue, Lei Zhang, Xiaoyan He, Decheng Kong, Yong Hua. Research Article Hypo-toxicity and prominent passivation characteristics of 316 L stainless steel fabricated by direct metal laser sintering in a simulated inflammation environment [J]. J. Mater. Sci. Technol., 2021, 93(0): 205-220. |
[11] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[12] | Yumeng Ni, Fan Zhang, Demian I. Njoku, Yingjie Yu, Jinshan Pan, Meijiang Meng, Ying Li. Corrosion mechanism of CuAl-NiC abradable seal coating system—The influence of porosity, multiphase, and multilayer structure on the corrosion failure [J]. J. Mater. Sci. Technol., 2021, 88(0): 258-269. |
[13] | F.H. Kuang, S.M. Wang, C. Gao, H.B. Zhang, R.K. Ren, J.L. Ren, J. Tong, Y.M. Liu, J. Liu. Unique microstructure and thermal insulation property of a novel waste-utilized foam ceramic [J]. J. Mater. Sci. Technol., 2020, 48(0): 175-179. |
[14] | Cheng Gu, Colin D. Ridgeway, Emre Cinkilic, Yan Lu, Alan A. Luo. Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model [J]. J. Mater. Sci. Technol., 2020, 49(0): 91-105. |
[15] | D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Yu. Ustinov, V.Yu. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 181-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||