J. Mater. Sci. Technol. ›› 2023, Vol. 133: 12-22.DOI: 10.1016/j.jmst.2022.06.017
• Research article • Previous Articles Next Articles
Jing Penga, Jia Lia,*(
), Bin Liub,*(
), Jian Wangc, Haotian Chena, Hui Fenga, Xin Zenga, Heng Duanb, Yuankui Caob, Junyang Heb, Peter K. Liawd, Qihong Fanga
Received:2022-04-02
Revised:2022-06-10
Accepted:2022-06-10
Published:2022-07-09
Online:2022-07-09
Contact:
Jia Li,Bin Liu
About author:binliu@csu.edu.cn (B. Liu).Jing Peng, Jia Li, Bin Liu, Jian Wang, Haotian Chen, Hui Feng, Xin Zeng, Heng Duan, Yuankui Cao, Junyang He, Peter K. Liaw, Qihong Fang. Formation process and mechanical properties in selective laser melted multi-principal-element alloys[J]. J. Mater. Sci. Technol., 2023, 133: 12-22.
| Scanning speed (mm s−1) | Laser power (W) | Laser spot diameter (µm) | Hatching space (µm) | Layer thickness (µm) | Scanning rotation angle (°) |
|---|---|---|---|---|---|
| 700 | 350 | 90 | 110 | 50 | 67 |
Table 1. Processing parameters of SLM.
| Scanning speed (mm s−1) | Laser power (W) | Laser spot diameter (µm) | Hatching space (µm) | Layer thickness (µm) | Scanning rotation angle (°) |
|---|---|---|---|---|---|
| 700 | 350 | 90 | 110 | 50 | 67 |
Fig. 3. (a) SEM micrograph of SLMed FeCrNi MPEA. (b, c) SEM micrographs of showing the cellular structure inside the grain. (d) EBSD IPF map, and (e) EBSD image quality (IQ) map superimposed with HAGBs and LAGBs. (f) Numerical statistics of the misorientation angle. For the SLMed FeCrNi, TEM images of (g) residual dislocations and (h) SFs. The yellow dashed lines represent the dislocation walls. (i) SFE as a function of the normalized Burgers vector in FeCrNi MPEA.
Fig. 4. (a) EPMA results of element distribution in the macro-scale of SLMed FeCrNi, (b) APT image of local chemical information at near-atomic scale, where the obvious element segregation is shown in the red dashed box. (c) Element composition measured along the black dotted line.
Fig. 6. Melting and solidification process. (a) Cooling temperature of melt pool with the increased time. The cross-section view of the model for the different time: (b) 0, (c) 100, (d) 160, (e) 200, (f) 250, (g) 310, (h) 400, (i) 430, and (j) 550 ps. The atoms in the blue box are colored by the temperature, and the atoms out of the blue box are colored by the atomic structure. The red arrows show the direction of heat conduction, and the red arcs show the boundary of the columnar crystal, and the blue arrows indicate the depth of the molten pool.
Fig. 7. Cr-elemental distribution during the SLM process. The cross-section views of the model at the different time: (a) 0, (b) 100, (c) 160, (d) 200, (e) 250, (f) 310, (g) 400, (h) 430, and (i) 550 ps. The atoms in the right part are colored by the temperature, and the other regions are colored by the atomic structure.
Fig. 8. Distribution of the dislocation and the SFs for the different time: (a) 200, (b) 250, (c) 310, (d) 400, (e) 430, and (f) 550 ps. Here, the red atoms represent HCP structure, the green line represents the 1/6<112> Shockley dislocation, the pink line is the 1/6<110> stair-rod dislocation, the blue line denotes the 1/6<110> perfect dislocation, the sky-blue line is the 1/3<111> frank dislocation, and the red line is other dislocations.
Fig. 9. (a, b) Snapshots of the microstructures before and after annealing. (c, d) Defects before and after annealing. (e, f) Elemental distribution before and after annealing, where Cr, Fe, and Ni. (g) Percentages of HCP and other atoms, and total length of dislocation before and after annealing.
Fig. 10. (a) Stress-strain curves along x and y loading directions. The microstructures for (b) x loading direction and (c) y loading direction at the yield point.
Fig. 11. (a) Stress-strain curves of SLMed FeCrNi MPEAs with different simulation cells. The microstructures for samples (b) S1 and (c) S2 at the yield point.
| Parameter | Symbol | Magnitude |
|---|---|---|
| Taylor factor | M | 3.06 |
| Shear modulus (GPa) | 88 | |
| Burger vector of partial dislocation (nm) | bp | 0.1476 |
| Burger vector of complete dislocation (nm) | b | 0.25 |
| Angle | 68.58° | |
| Thickness (nm) | t | 8 |
| Characteristic interface stress (J m−2) | F | 2 |
| Dislocation core cut-off parameter | 0.1 for Y, 0.2 for X | |
| Average density of immovable dislocation (m−2) | 1.7 × 1016 for X, 1.9 × 1016 for Y | |
| Empirical constant | 0.33 | |
| Taylor factor | M | 3.06 |
Table 2. Parameters of the FeNiCr MPEA [50,54,56].
| Parameter | Symbol | Magnitude |
|---|---|---|
| Taylor factor | M | 3.06 |
| Shear modulus (GPa) | 88 | |
| Burger vector of partial dislocation (nm) | bp | 0.1476 |
| Burger vector of complete dislocation (nm) | b | 0.25 |
| Angle | 68.58° | |
| Thickness (nm) | t | 8 |
| Characteristic interface stress (J m−2) | F | 2 |
| Dislocation core cut-off parameter | 0.1 for Y, 0.2 for X | |
| Average density of immovable dislocation (m−2) | 1.7 × 1016 for X, 1.9 × 1016 for Y | |
| Empirical constant | 0.33 | |
| Taylor factor | M | 3.06 |
Fig. 12. Comparison of yield stress between MD simulation and physical model in x and y loading directions. Grid columns represent the yield strength obtained from MD. Color columns represent the contribution of different strengthening mechanisms on yield strength, where the red column is dislocation strengthening, the green column is lattice distortion strengthening, and the yellow column is interface strengthening.
Fig. A1. Fig. A1. Grain morphology evolution of a model with random orientation of powder. The cross-section view for different time: (a) 250, (b) 295, (c) 386, and (d) 450 ps.
| [1] |
Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Acta Mater. 171 (2019) 108-118.
DOI URL |
| [2] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
| [3] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta. Mater. 94 (2015) 59-68.
DOI URL |
| [4] | H. Jia, H. Sun, H. Wang, Y. Wu, H. Wang, Int. J. Adv. Manuf. Tech. 113 (2021) 2413-2435. |
| [5] |
X. Zhang, Y. Liao, Powder Technol. 339 (2018) 677-685.
DOI URL |
| [6] | B. Nagarajan, Z. Hu, X. Song, W. Zhai, J. Wei, Engineering 5 (2019) 702-720. |
| [7] |
I. Koutiri, E. Pessard, P. Peyre, O. Amlou, T. De Terris, J. Mater. Process. Technol. 255 (2018) 536-546.
DOI URL |
| [8] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63-71.
DOI URL |
| [9] |
B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, F. Xuan, Powder Technol. 360 (2020) 509-521.
DOI URL |
| [10] |
J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.H. Yu, H.S. Kim, Mater. Res. Lett. 8 (2020) 1-7.
DOI URL |
| [11] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
| [12] | Y. Wang, R. Li, P. Niu, Z. Zhang, T. Yuan, J. Yuan, K. Li, Intermetallics 120 (2020) 106746. |
| [13] |
J. Li, B. Xie, L. Li, B. Liu, Y. Liu, D. Shaysultanov, Q.H. Fang, N. Stepanov, P.K. Liaw, Mater. Horiz. 9 (2022) 1518-1525.
DOI URL |
| [14] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloy. Compd. 746 (2018) 125-134.
DOI URL |
| [15] | R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X.P Liang, P.K. Liaw, Intermetallics 94 (2018) 165-171. |
| [16] |
Z. Fu, B. Yang, K. Gan, D. Yan, Z. Li, G. Gou, H. Chen, Z. Wang, Corros. Sci. 190 (2021) 109695.
DOI URL |
| [17] |
H. Duan, B. Liu, A. Fu, J. He, T. Yang, C.T. Liu, Y. Liu, J. Mater. Sci. Technol. 99 (2022) 207-214.
DOI URL |
| [18] | H. Chen, Q. Fang, K. Zhou, Y. Liu, J. Li, CrystEngComm 22 (2020) 4136-4146. |
| [19] | S. Kurian, R. Mirzaeifar, Addit. Manuf. 35 (2020) 101272. |
| [20] |
J. Li, H. Chen, S. Li, Q. Fang, Y. Liu, L. Liang, H. Wu, P.K. Liaw, Mater. Sci. Eng. A 760 (2019) 359-365.
DOI URL |
| [21] |
E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, J. Mater. Process. Technol. 249 (2017) 255-263.
DOI URL |
| [22] | H. Shipley, D. McDonnell, Culleton M, R. Coull, R. Lupoi, G. O’Donnell, D. Trim- ble, Int. J. Mach. Tool Manuf. 128 (2018) 1-20. |
| [23] |
W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, J. Alloy. Compd. 740 (2018) 910-925.
DOI URL |
| [24] |
R. Halonen, E. Zapadinsky, H. Vehkamäki, J. Chem. Phys. 148 (2018) 164508.
DOI URL |
| [25] |
Q. Spreiter, M. Walter, J. Comput. Phys. 152 (1999) 102-119.
DOI URL |
| [26] |
G. Bonny, N. Castin, D. Terentyev, Model. Simul. Mater. Sci. Eng. 21 (2013) 085004.
DOI URL |
| [27] |
G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, A. Bakaev, Simul. Mater. Sci. Eng. 19 (2011) 085008.
DOI URL |
| [28] |
C. Varvenne, A. Luque, W.G. Nöhring, W.A. Curtin, Phys. Rev. B 93 (2016) 104201.
DOI URL |
| [29] | O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765. |
| [30] |
Y. Zhang, H. Liu, J. Mo, M. Wang, Z. Chen, Y. He, W. Yang, C. Tang, Comput. Mater. Sci. 150 (2018) 62-69.
DOI URL |
| [31] |
Z. Xiao, C. Chen, H. Zhu, Z. Hu, B. Nagarajan, L. Guo, X. Zeng, Mater. Des. 193 (2020) 108846.
DOI URL |
| [32] |
J. Li, Q. Fang, B. Liu, Y. Liu, Acta Mater. 147 (2018) 35-41.
DOI URL |
| [33] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2009) 015012.
DOI URL |
| [34] |
K. Kunze, T. Etter, J. Grässlin, V. Shklover, Mater. Sci. Eng. A 620 (2015) 213-222.
DOI URL |
| [35] |
J. Hou, W. Chen, Z. Chen, K. Zhang, A. Huang, J. Mater. Sci. Technol. 48 (2020) 63-71.
DOI URL |
| [36] |
Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, Mater. Sci. Eng. A 799 (2021) 140279.
DOI URL |
| [37] |
Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, B. Cai, Acta Mater. 154 (2018) 79-89.
DOI URL |
| [38] |
L. Li, Z. Li, A.K. da Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Acta Mater. 178 (2019) 1-9.
DOI URL |
| [39] |
K.G. Prashanth, J. Eckert, J. Alloy. Compd. 707 (2017) 27-34.
DOI URL |
| [40] |
A. Fu, B. Liu, W. Lu, B. Liu, J. Li, Q. Fang, Z. Li, Y. Liu, Scr. Mater. 186 (2020) 381-386.
DOI URL |
| [41] |
J. Li, M. Yi, H. Wu, Q. Fang, Y. Liu, B. Liu, K. Zhou, P.K. Liaw, Mater. Sci. Eng. A 790 (2020) 139736.
DOI URL |
| [42] | Y. Feng, X. Gao, Y. Zhang, C. Peng, X. Gui, Y. Sun, X. Xiao, Int. J. Adv. Manuf. Technol. 112 (2021) 2301-2312. |
| [43] |
D.R. Liu, S. Wang, W. Yan, Mater. Des. 194 (2020) 108919.
DOI URL |
| [44] | D. Gu, C. Ma, M. Xia, D. Dai, Q. Shi, Engineering 3 (2017) 675-684. |
| [45] |
Z. Gao, Bu H, Y. Feng, F. Lyu, X. Zhan, J. Manuf. Process. 71 (2021) 37-55.
DOI URL |
| [46] |
Y.J. Gao, Q.Q. Deng, Z.Y. Liu, Z.J. Huang, Y.X. Li, Z.R. Luo, J. Mater. Sci. Technol. 49 (2020) 236-250.
DOI URL |
| [47] |
M.G. Tsoutsouva, G. Regula, B. Ryningen, P.E. Vullum, N. Mangelinck-Noël, G. Stokkan, Acta Mater. 210 (2021) 116819.
DOI URL |
| [48] | S. Sunny, R. Mathews, G. Gleason, A. Malik, J. Halley, Int. J. Mech. Sci. 202 (2021) 106534. |
| [49] |
X. Li, H. Gao, Nat. Mater. 15 (2016) 373-374.
DOI URL |
| [50] |
Z.H. Cao, G.Y. Zhai, Y.J. Ma, L.P. Ding, P.F. Li, H.L. Liu, H.M. Lu, Y.P. Cai, X.K. Meng, Int. J. Plast. 145 (2021) 103081.
DOI URL |
| [51] | Y.F. Zhao, X.B. Feng, J.Y. Zhang, Y. Lu, S.H. Wu, Y.Q. Wang, K. Wu, J. Sun, Nanoscale 12 (2020) 14135-14149. |
| [52] |
S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2019) 1807142.
DOI URL |
| [53] |
A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43 (1991) 3161.
DOI URL |
| [54] |
L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, P.K. Liaw, Mater. Sci. Eng. A 784 (2020) 139323.
DOI URL |
| [55] |
Y.K. Kim, J. Choe, K.A. Lee, J. Alloy. Compd. 805 (2019) 680-691.
DOI URL |
| [56] |
H. Zhou, X. Li, S. Qu, W. Yang, H. Gao, Nano Lett. 14 (2014) 5075-5080.
DOI URL |
| [1] | Huan Liu, Hai Wang, Ling Ren, Dong Qiu, Ke Yang. Antibacterial copper-bearing titanium alloy prepared by laser powder bed fusion for superior mechanical performance [J]. J. Mater. Sci. Technol., 2023, 132(0): 100-109. |
| [2] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
| [3] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
| [4] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
| [5] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
| [6] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
| [7] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
| [8] | Shilu Luo, Tiantian Xiang, Jingwen Dong, Fengmei Su, Youxin Ji, Chuntai Liu, Yuezhan Feng. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 129(0): 127-134. |
| [9] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
| [10] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [11] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
| [12] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [13] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
| [14] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
| [15] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
