J. Mater. Sci. Technol. ›› 2023, Vol. 133: 23-31.DOI: 10.1016/j.jmst.2022.06.016
• Research article • Previous Articles Next Articles
Hongxiang Chena,c,d,*(
), Sheng Lia, Jun Dengb, Zhilong Zhanga, Jianeng Huanga,c, Fa Changa,c, Li Huanga, Shixuan Dub,e,f,*(
), Pinqiang Daia,c,*(
)
Received:2022-04-10
Revised:2022-06-10
Accepted:2022-06-13
Published:2022-07-09
Online:2022-07-09
Contact:
Hongxiang Chen,Shixuan Du,Pinqiang Dai
About author:pqdai@126.com (P. Dai).Hongxiang Chen, Sheng Li, Jun Deng, Zhilong Zhang, Jianeng Huang, Fa Chang, Li Huang, Shixuan Du, Pinqiang Dai. Synthesis, formation mechanism, and intrinsic physical properties of several As/P-containing MAX phases[J]. J. Mater. Sci. Technol., 2023, 133: 23-31.
Fig. 1. Phase-composition and crystal-structure characterizations of Nb3P2C prepared by MSS. (a) XRD pattern and Rietveld refinement results of as-prepared Nb3P2C sintered at 1200 °C. The inset is the crystal structure of 321 phases viewed from the [110] direction. (b) XRD pattern of the sample sintered at 1150 °C. The ICDD PDF cards of NbP (PDF#17-0882) and Nb2PC (PDF#21-0600) are given below the XRD pattern. The red-heart symbol indicates the characteristic Bragg peak (105) of Nb3P2C. (c) HRTEM image of Nb3P2C, the green atoms can be regarded as a single layer of Nb/P atoms. (d) SAED pattern of Nb3P2C collected along the <001> zone axis.
Fig. 2. SEM and EDS mapping results of Nb3P2C. (a, b) Micro-morphology of as-prepared Nb3P2C powder by MSS. (c) EDS result of the particle in (b). EDS mapping analysis of (d) Nb and (e) P. (f) Morphology of the one prepared by SSS.
Fig. 3. Chemical reaction routes of Nb3P2C. XRD patterns of samples prepared via different chemical reaction routes by (a) SSS and (b) MSS. The cyan curves are the Rietveld refinement results. (c) Phase content of 321 phases prepared by SSS and MSS. (d) Calculated Gibbs free energy change of different chemical reaction routes to synthesize Nb3P2C and Nb3As2C.
Fig. 4. Phase content of As/P-containing MAX phases. (a) Phase content of target products prepared by SSS and MSS with optimal sintering process. (b) Phase content of Nb2PC and Nb3P2C in the end-product of “Nb2PC” using different Ts by MSS.
Fig. 5. Magneto-transport properties of Nb3As2C and Nb3P2C. (a) Temperature-dependent resistivity of Nb3As2C (0.3-700 K) and Nb3P2C (2-380 K). (b) Temperature-dependent carrier concentration and mobility of Nb3As2C. (c) Field-dependent magnetoresistance of Nb3As2C at 10 K, the navy line is the linear fit results.
Fig. 6. Electronic structure of Nb3As2C. (a) Band structures. (b) Partial density of states. (c) Fermi surface. The Fermi surface was visualized by the FermiSurfer package [53].
Fig. 7. Thermoelectric properties of Nb3As2C. (a) Temperature-dependent Seebeck coefficient and power factor. (b) Temperature dependence of total thermal conductivity (κtot), and the electronic contribution (κe) and lattice contribution (κlat) of it. (c) Temperature-dependent figure of merit, ZT.
| [1] |
M.W. Barsoum, Prog. Solid State Chem. 28 (20 0 0) 201-281.
DOI URL |
| [2] | H.X. Chen, D.L. Yang, Q.H. Zhang, S.F. Jin, L.W. Guo, J. Deng, X.D. Li, X.L. Chen, Angew. Chem-Int. Ed. 58 (2019) 4576-4580. |
| [3] | P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, Thin Solid Films 518 (2010) 1851-1878. |
| [4] | M.W. Barsoum,MAX Phases, Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013. |
| [5] |
M. Li, Y.B. Li, K. Luo, J. Lu, P. Eklund, P. Persson, J. Rosen, L. Hultman, S.Y. Du, Z.R. Huang, Q. Huang, J. Inorg. Mater. 34 (2019) 60-64.
DOI URL |
| [6] | V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, D. V. Talapin, Science 369 (2020) 979-983. |
| [7] |
M. Naguib, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 33 (2021) 2103393.
DOI URL |
| [8] | A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 372 (2021) eabf1581. |
| [9] |
Z.G. Du, C. Wu, Y.C. Chen, Z.J. Cao, R.M. Hu, Y.Z. Zhang, J.N. Gu, Y. Cui, H. Chen, Y.Z. Shi, J.X. Shang, B. Li, S.B. Yang, Adv. Mater. 33 (2021) 2101473.
DOI URL |
| [10] | S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna, R. Khaledialidusti, W. Hong, M.G. Sternberg, S. K.R.S. Sankaranarayanan, B. Anasori, ACS Nano 15 (2021) 12815-12825. |
| [11] |
M. Sokol, V. Natu, S. Kota, M.W. Barsoum, Trends Chem. 1 (2019) 210-223.
DOI URL |
| [12] |
L.F. He, Y.W. Bao, J.Y. Wang, M.S. Li, Y.C. Zhou, Acta Mater. 57 (2009) 2765-2774.
DOI URL |
| [13] |
L.Y. Zheng, J.M. Wang, X.P. Lu, F.Z. Li, J.Y. Wang, Y.C. Zhou, J. Am. Ceram. Soc. 93 (2010) 3068-3071.
DOI URL |
| [14] |
J.Y. Wang, Y.C. Zhou, Annu. Rev. Mater. Res. 39 (2009) 415-443.
DOI URL |
| [15] |
M.A. Hadi, M.A. Rayhan, S.H. Naqib, A. Chroneos, A. K.M.A. Islam, Comput. Mater. Sci. 170 (2019) 109144.
DOI URL |
| [16] |
R.S. Kumar, S. Rekhi, A.L. Cornelius, M.W. Barsoum, Appl. Phys. Lett. 86 (2005) 111904.
DOI URL |
| [17] | M.A. Hadi, S.R.G. Christopoulos, A. Chroneos, S.H. Naqib, A. K.M.A. Islam, Mater. Today Commun. 25 (2020) 101499. |
| [18] |
T.H. Scabarozi, S. Amini, O. Leaffer, A. Ganguly, S. Gupta, W. Tambussi, S. Clip- per, J.E. Spanier, M.W. Barsoum, J.D. Hettinger, S.E. Lofland, J. Appl. Phys. 105 (2009) 013543.
DOI URL |
| [19] |
S.E. Lofland, J.D. Hettinger, T. Meehan, A. Bryan, P. Finkel, S. Gupta, M.W. Bar- soum, G. Hug, Phys. Rev. B 74 (2006) 174501.
DOI URL |
| [20] |
T. Liao, J. Wang, Y. Zhou, J. Phys. Condens. Matter 18 (2006) 6183-6192.
DOI URL |
| [21] |
A. Dash, R. Vaßen, O. Guillon, J. Gonzalez-Julian, Nat. Mater. 18 (2019) 465-470.
DOI URL |
| [22] |
H. Fashandi, M. Dahlqvist, J. Lu, J. Palisaitis, S.I. Simak, I.A. Abrikosov, J. Rosen, L. Hultman, M. Andersson, A. Lloyd Spetz, P. Eklund, Nat. Mater. 16 (2017) 814-818.
DOI PMID |
| [23] |
Y.B. Li, H. Shao, Z.F. Lin, J. Lu, L.Y. Liu, B. Duployer, P.O. ˚A. Persson, P. Ek- lund, L. Hultman, M. Li, K. Chen, X.H. Zha, S.Y. Du, P. Rozier, Z.F. Chai, E. Raymundo-Piñero, P.L. Taberna, P. Simon, Q. Huang, Nat. Mater. 19 (2020) 894-899.
DOI URL |
| [24] |
T. Galvin, N.C. Hyatt, W.M. Rainforth, I.M. Reaney, D. Shepherd, J. Eur. Ceram. Soc. 38 (2018) 4585-4589.
DOI URL |
| [25] |
A.M. Abdelkader, J. Eur. Ceram. Soc. 36 (2016) 33-42.
DOI URL |
| [26] |
Y. Zhong, Y. Liu, J.W. Ye, N. Jin, Z.F. Lin, J. Am. Ceram. Soc. 105 (2022) 2277-2287.
DOI URL |
| [27] |
M. Li, J. Lu, K. Luo, Y.B. Li, K.K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O. ˚A. Persson, S.Y. Du, Z.F. Chai, Z.R. Huang, Q. Huang, J. Am. Chem. Soc. 141 (2019) 4730-4737.
DOI URL |
| [28] | Y.G. Gogotsi, R.A. Andrievski, Materials Science of Carbides, Nitrides and Borides, Springer, Netherlands, Dordrecht, 1999. |
| [29] | T. Kimura, in: C. Sikalidis, Advances in Ceramics - Synthesis and Characteriza- tion, Processing and Specific Applications, IntechOpen, London, 2011. |
| [30] | J. Rodríguez-Carvajal, Physica B 192 (1993) 55-69. |
| [31] |
N.V.Y. Scarlett, I.C. Madsen, Powder Diffr. 21 (2006) 278-284.
DOI URL |
| [32] | C. Giannini, A. Guagliardi, R. Millini, J. Appl. Crystallogr. 35 (2002) 4 81-4 90. |
| [33] |
D.L. Bish, S.A. Howard, J. Appl. Crystallogr. 21 (1988) 86-91.
DOI URL |
| [34] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
| [35] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
| [36] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
| [37] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396. |
| [38] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
| [39] |
A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1-5.
DOI URL |
| [40] |
Z.H. Tian, F.S. Wu, P.Y. Hu, J.X. Ding, Y. Zhang, P.G. Zhang, Z.M. Sun, J. Alloy. Compd. 894 (2022) 162429.
DOI URL |
| [41] |
O. Beckmann, H. Boller, H. Nowotny, Mon. Chem. 99 (1968) 1580-1583.
DOI URL |
| [42] |
X. Liu, N. Fechler, M. Antonietti, Chem. Soc. Rev. 42 (2013) 8237-8265.
DOI URL |
| [43] | S.V. Volkov, Sov. Prog. Chem. 55 (1989) 1-8. |
| [44] | M. Xiao, B. Luo, M. Konarova, Z.L. Wang, L.Z. Wang, Eur. J. Inorg. Chem. 2020 ( 2020) 2942-2949. |
| [45] |
P. Eklund, J. Rosen, P.O. Å. Persson, J. Phys. D-Appl. Phys. 50 (2017) 113001.
DOI URL |
| [46] |
K. Sakamaki, H. Wada, H. Nozaki, Y. Onuki, M. Kawai, Solid State Commun. 112 (1999) 323-327.
DOI URL |
| [47] |
A.D. Bortolozo, O.H. Sant’Anna, C.A.M. dos Santos, A.J.S. Machado, Solid State Commun. 144 (2007) 419-421.
DOI URL |
| [48] |
R. Meshkian, A.S. Ingason, M. Dahlqvist, A. Petruhins, U.B. Arnalds, F. Magnus, J. Lu, J. Rosen, Phys. Status Solidi-Rapid Res. Lett. 9 (2015) 197-201.
DOI URL |
| [49] |
L.E. Toth, J. Less Common Met. 13 (1967) 129-131.
DOI URL |
| [50] | A.D. Bortolozo, Z. Fisk, O.H. Sant’Anna, C.A.M. dos Santos, A.J.S. Machado, Phys- ica C 469 (2009) 256-258. |
| [51] |
R.H. Willens, E. Buehler, B.T. Matthias, Phys. Rev. 159 (1967) 327-330.
DOI URL |
| [52] | I. Lifshitz, V. Peschanskii, Sov. Phys. JETP 8 (1959) 875-883. |
| [53] |
M. Kawamura, Comput. Phys. Commun. 239 (2019) 197-203.
DOI URL |
| [54] | Charles Kittel,Introduction to Solid State Physics, 8th ed., John Wiley & Sons, Inc, New York, 2004. |
| [1] | Xudong Liu, Jiangkun Fan, Kai Cao, Fulong Chen, Ruihao Yuan, Degui Liu, Bin Tang, Hongchao Kou, Jinshan Li. Creep anisotropy behavior, deformation mechanism, and its efficient suppression method in Inconel 625 superalloy [J]. J. Mater. Sci. Technol., 2023, 133(0): 58-76. |
| [2] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
| [3] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
| [4] | Xipeng Tao, Yunling Du, Xinguang Wang, Jie Meng, Yizhou Zhou, Jinguo Li, Xiaofeng Sun. Effect of solution cooling rate on the microstructure and creep deformation mechanism of a rhenium-free second-generation single crystal superalloy [J]. J. Mater. Sci. Technol., 2022, 131(0): 14-29. |
| [5] | Xiaorong Liu, Sihan Jiang, Jianlin Lu, Jie Wei, Daixiu Wei, Feng He. The dual effect of grain size on the strain hardening behaviors of Ni-Co-Cr-Fe high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 131(0): 177-184. |
| [6] | Qiyang Tan, Wyman Zhuang, Marco Attia, Richard Djugum, Mingxing Zhang. Recent progress in additive manufacturing of bulk MAX phase components: A review [J]. J. Mater. Sci. Technol., 2022, 131(0): 30-47. |
| [7] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
| [8] | Jia Liu, Cuiying Ma, Lianli Wang, Ke Ren, Hongpei Ran, Danni Feng, Huiling Du, Yiguang Wang. Single-phase formation mechanism and dielectric properties of sol-gel-derived Ba(Ti0.2Zr0.2Sn0.2Hf0.2Ce0.2)O3 high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 130(0): 103-111. |
| [9] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
| [10] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
| [11] | S.J. Tsianikas, Y. Chen, J. Jeong, S. Zhang, Z. Xie. Forging strength-ductility unity in a high entropy steel [J]. J. Mater. Sci. Technol., 2022, 113(0): 158-165. |
| [12] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
| [13] | Y.W. Qi, Z.P. Luo, X.Y. Li, K. Lu. Transition of deformation mechanisms from twinning to dislocation slip in nanograined pure cobalt [J]. J. Mater. Sci. Technol., 2022, 121(0): 124-129. |
| [14] | Yan Zhang, Chengjie Lu, Yun Dong, Min Zhou, Jiandang Liu, Hongjun Zhang, Bangjiao Ye, ZhengMing Sun. Insights into the dual-roles of alloying elements in the growth of Sn whiskers [J]. J. Mater. Sci. Technol., 2022, 117(0): 65-71. |
| [15] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
