J. Mater. Sci. Technol. ›› 2022, Vol. 121: 124-129.DOI: 10.1016/j.jmst.2022.02.009
• Research Article • Previous Articles Next Articles
Y.W. Qia,b, Z.P. Luoa, X.Y. Lia,*(), K. Lua
Received:
2021-12-22
Revised:
2022-01-16
Accepted:
2022-02-13
Published:
2022-09-10
Online:
2022-03-16
Contact:
X.Y. Li
About author:
*E-mail address: xyli@imr.ac.cn (X.Y. Li).Y.W. Qi, Z.P. Luo, X.Y. Li, K. Lu. Transition of deformation mechanisms from twinning to dislocation slip in nanograined pure cobalt[J]. J. Mater. Sci. Technol., 2022, 121: 124-129.
Fig. 1. (a) A cross-sectional SEM observation of the GNG surface layer with different microstructures (nanograins, submicron-grains and deformation twins) in the as-SMGT Co sample. (b) Average grain size and average Vickers hardness along the depth from the treated surface.
Fig. 2. Structural characteristics of submicron-grains at depth of 40--60 μm: (a) Bright-field TEM image and corresponding selected area electron diffraction pattern showing $\{10\bar{1}2\}$ twins; (b, c) g = $[01\bar{1}0]$ and g = [0002] two-beam bright field images showing dislocation array in matrix and twin (The blue arrows represent the <a> dislocation array); (d) Formation of low-angle GBs perpendicular to the basal plane (the dash line represents basal plane trace); $[\bar{1}2\bar{1}0]$zone axis HRTEM image (e) and inversed FFT image (f) using a pair of $\{1\bar{1}00\}$reflections, showing the presence of extra half plans for <a> dislocations.
Fig. 3. Microstructural characteristics of nanograins at depth of 0~10 μm: (a) Bright field image showing the approximately equiaxed nanograins (corresponding selected area electron diffraction pattern is inset); (b) Dislocation density distribution calculated by HAADF-STEM images (The inset presents significant slip planes and Burger vector of dislocations); (c) $[\bar{1}2\bar{1}0]$ zone axis HAADF-STEM image showing various dislocations and SFs in nanograin; (d) Formation of the low-angle GB by <c+a> dislocations from the nanograin presented in the inset image.
Fig. 4. Cross-sectional orientation mapping and typical GB characterizations of the Co sample subject to SMGT: (a) and (b) 40 μm depth, (c) and (d) 10 μm depth. (e) Grain size effect on the fraction of twinned grains by SEM-TKD. (f) Misorientation angle distributions of the two deformation microstructures shown in a and c (various twins angles are identified by dash lines). (g, h) Shear direction (SD) inverse pole figures of submicron-grains and nanograins in the same position. Correspondingly, grain orientations containing $\{10\bar{1}2\}$ $<\bar{1}011>$ twins are shown in (i, j).
[1] |
X. Luo, Z.Q. Feng, T.B. Yu, J.G. Luo, T.L. Huang, G.L. Wu, N. Hansen, X.X. Huang, Acta Mater. 183 (2020) 398-407.
DOI URL |
[2] | K. Wei, R. Hu, D. Yin, L. Xiao, S. Pang, Y. Cao, H. Zhou, Y. Zhao, Y. Zhu, Acta Mater. 206 (2021) |
[3] |
X.G. Qiao, Y.W. Zhao, W.M. Gan, Y. Chen, M.Y. Zheng, K. Wu, N. Gao, M.J. Starink, Mater. Sci. Eng. A 619 (2014) 95-106.
DOI URL |
[4] |
J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, J.T. Wang, Scr. Mater. 69 (2013) 428-431.
DOI URL |
[5] |
S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49 (2001) 4277-4289.
DOI URL |
[6] | W. Li, L. Wang, B. Zhou, C. Liu, X. Zeng, J. Mater. Sci. Technol. 35 (2019) 2200-2206. |
[7] |
X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Acta Mater. 53 (2005) 681-691.
DOI URL |
[8] |
Y. Cui, K. Aoyagi, H. Bian, Y. Hayasaka, A. Chiba, J. Mater. Sci. Technol. 73 (2021) 116-127.
DOI URL |
[9] |
B.Y. Liu, F. Liu, N. Yang, X.B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.F. Nie, Z.W. Shan, Science 365 (2019) 73-75.
DOI URL |
[10] |
H. Abdolvand, K. Louca, C. Mareau, M. Majkut, J. Wright, Acta Mater. 196 (2020) 733-746.
DOI URL |
[11] |
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59 (2011) 429-439.
DOI URL |
[12] |
M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49 (2001) 4025-4039.
DOI URL |
[13] | Y.T. Zhu, X.Z. Liao, X.L. Wu, J. Narayan, J. Mater. Sci. 48 (2013) 4 467-4 475. |
[14] |
H. Fu, X. Zhou, B. Wu, L. Qian, X.S. Yang, J. Mater. Sci. Technol. 82 (2021) 227-238.
DOI URL |
[15] |
M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52 (2004) 5093-5103.
DOI URL |
[16] |
A. Ghaderi, M.R. Barnett, Acta Mater. 59 (2011) 7824-7839.
DOI URL |
[17] |
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Hi-gashi, Acta Mater. 51 (2003) 2055-2065.
DOI URL |
[18] |
W. Betteridge, Prog. Mater. Sci. 24 (1979) 51-142.
DOI URL |
[19] |
A. Korner, H.P. Karnthaler, Philos. Mag. A 48 (2006) 469-477.
DOI URL |
[20] |
X.Y. Zhang, Y.T. Zhu, Q. Liu, Scr. Mater. 63 (2010) 387-390.
DOI URL |
[21] |
W. Xu, X.C. Liu, K. Lu, Acta Mater. 152 (2018) 138-147.
DOI URL |
[22] |
X.L. Wu, N.R. Tao, Q.M. Wei, P. Jiang, J. Lu, K. Lu, Acta Mater. 55 (2007) 5768-5779.
DOI URL |
[23] |
D.H. Shin, I. Kim, J. Kim, Y.S. Kim, S.L. Semiatin, Acta Mater. 51 (2003) 983-996.
DOI URL |
[24] |
W.W. Hu, Z.Q. Yang, H.Q. Ye, Acta Mater. 124 (2017) 372-382.
DOI URL |
[25] | M. Martinez, G. Fleurier, F. Chmelík, M. Knapek, B. Viguier, E. Hug, Mater. Char- act. 134 (2017) 76-83. |
[26] |
H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Scr. Mater. 112 (2016) 50-53.
DOI URL |
[27] |
G. Fleurier, E. Hug, M. Martinez, P.A. Dubos, C. Keller, Phil. Mag. Lett. 95 (2015) 122-130.
DOI URL |
[28] |
Y. Wang, H. Choo, Acta Mater. 81 (2014) 83-97.
DOI URL |
[29] | Z. Wu, R. Ahmad, B. Yin, S. Sandlobes, W.A. Curtin, Science 359 (2018) 447-452. |
[30] |
Z. Wu, W.A. Curtin, Scr. Mater. 116 (2016) 104-107.
DOI URL |
[1] | Jia Chen, Min Guo, Min Yang, Lin Liu, Jun Zhang. Double minimum creep processing and mechanism for γʹ strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 123-129. |
[2] | Vioni Dwi Sartika, Won Seok Choi, Gwanghyo Choi, Jaewook Han, Sung-Jin Chang, Won-Seok Ko, Blazej Grabowski, Pyuck-Pa Choi. Joining dissimilar metal of Ti and CoCrMo using directed energy deposition [J]. J. Mater. Sci. Technol., 2022, 111(0): 99-110. |
[3] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[4] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
[5] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[6] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[7] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[8] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[9] | S.J. Tsianikas, Y. Chen, J. Jeong, S. Zhang, Z. Xie. Forging strength-ductility unity in a high entropy steel [J]. J. Mater. Sci. Technol., 2022, 113(0): 158-165. |
[10] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[11] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[12] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[13] | Peng-Cheng Zhao, Guang-Jian Yuan, Run-Zi Wang, Bo Guan, Yun-Fei Jia, Xian-Cheng Zhang, Shan-Tung Tu. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF [J]. J. Mater. Sci. Technol., 2021, 83(0): 196-207. |
[14] | Yang Li, Ziyang Luo, Shunfei Liang, Huizhen Qin, Xun Zhao, Lingyun Chen, Huayu Wang, Shaowei Chen. Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 199-208. |
[15] | Qiang Wang, Liangcai Zeng, Tengfei Gao, Hui Du, Xinwang Liu. On the room-temperature tensile deformation behavior of a cast dual-phase high-entropy alloy CrFeCoNiAl0.7 [J]. J. Mater. Sci. Technol., 2021, 87(0): 29-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||