J. Mater. Sci. Technol. ›› 2022, Vol. 119: 219-244.DOI: 10.1016/j.jmst.2021.11.063
• Review Article • Previous Articles Next Articles
Jiahui Lia, Yvonne Durandeta, Xiaodong Huanga, Guangyong Sunb, Dong Ruana,*()
Received:
2021-06-10
Revised:
2021-10-16
Accepted:
2021-11-07
Published:
2022-08-20
Online:
2022-03-02
Contact:
Dong Ruan
About author:
* E-mail address: druan@swin.edu.au (D. Ruan).Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities[J]. J. Mater. Sci. Technol., 2022, 119: 219-244.
Fibers type | FDM | DIW | SLS | SLA |
---|---|---|---|---|
Nanofibers: diameter much less than 1 μm | ||||
xGnPs | ✓ | ✓ | ||
CNFs | ✓ | ✓ | ✓ | ✓ |
MWCNTs | ✓ | ✓ | ✓ | ✓ |
Carbon black | ✓ | ✓ | ||
SiO2 nanoparticles | ✓ | |||
Micro-fibers: diameter larger than 1 μm and length within 50 to 400 μm | ||||
CF, GF and KF | ✓ | ✓ | ✓ | ✓ |
SiC whiskers | ✓ | ✓ | ||
Natural fibers | ✓ | |||
Milli-fibers: longer than 400 μm | ||||
CF and GF | ✓ |
Table 1. Different types of reinforcing fibers used in various AM techniques.
Fibers type | FDM | DIW | SLS | SLA |
---|---|---|---|---|
Nanofibers: diameter much less than 1 μm | ||||
xGnPs | ✓ | ✓ | ||
CNFs | ✓ | ✓ | ✓ | ✓ |
MWCNTs | ✓ | ✓ | ✓ | ✓ |
Carbon black | ✓ | ✓ | ||
SiO2 nanoparticles | ✓ | |||
Micro-fibers: diameter larger than 1 μm and length within 50 to 400 μm | ||||
CF, GF and KF | ✓ | ✓ | ✓ | ✓ |
SiC whiskers | ✓ | ✓ | ||
Natural fibers | ✓ | |||
Milli-fibers: longer than 400 μm | ||||
CF and GF | ✓ |
Fiber type | Young's modulus(GPa) | Tensile strength (MPa) | Specific strength(kN m/kg) |
---|---|---|---|
Carbon fiber | 120 - 180 | 1600 - 4127 | 2457 - 3919 |
Glass fiber | 30 - 40 | 1500 - 3450 | 1307 - 3300 |
Table 2. Mechanical properties of carbon and glass fibers (data from [39]).
Fiber type | Young's modulus(GPa) | Tensile strength (MPa) | Specific strength(kN m/kg) |
---|---|---|---|
Carbon fiber | 120 - 180 | 1600 - 4127 | 2457 - 3919 |
Glass fiber | 30 - 40 | 1500 - 3450 | 1307 - 3300 |
Fig. 5. SEM images of the fracture surfaces of AM-fabricated CF/PEEK with varied fiber weight percentage (a1) fracture surface of 5 wt.% CF/PEEK; (a2) enlargement of the area with pores; (b1) fracture surface of 10 wt.% CF/PEEK; (b2) enlargement of layer boundary; (c1) fracture surface of 15 wt.% CF/PEEK showing interlayer gaps; (c2) enlargement of pores inside filament [31].
Fig. 6. Mechanical properties of FRCs fabricated using modified FDM processes at elevated temperatures: (a) tensile modulus; (b) tensile strength (data from [29,34]).
Fig. 8. SEM photographs of (a) untreated fibers; (b) nitrogen treated fibers; (c) fracture surface of untreated CF/B50; (d) fracture surface of treated CF/B50 [43].
Fig. 9. SEM images of the cross-sectional surfaces of SLS-fabricated FRCs: (a) CF/PA12 parts as fabricated right after SLS process; (b) CF/PA12/EP ternary composite [60].
Fig. 10. Schematic diagram of SLA process to fabricate discontinuous FRCs: (a) initial stage of typical SLA printer; (b) raised platform with cured composites.
Fig. 11. SEM images of the cross sections of SLA-fabricated specimens: (a) top layer of the cross section of a glass powder specimen; (b) bottom layer of the cross section of a glass powder specimen; (c) top layer of the cross section of a short glass fiber specimen; (d) bottom layer of the cross section of a short glass fiber specimen [62].
Fig. 12. Tensile strength vs. tensile modulus of materials manufactured via various AM techniques and traditional injection molding (data from [[69], [70], [71], [72], [73], [74], [75], [76], [77], [78]).
Fig. 13. FDM printing process to fabricate continuous FRCs: (a) coaxial extrusion using a single nozzle [94]; (b) dual extrusion using two nozzles [95].
Fig. 15. SEM micrographs of AM-fabricated continuous FRCs: (a) fiber-matrix interface of CF/PLA; (b) fiber pull-out phenomenon of CF/PA after a tensile test; (c) fiber-matrix interface of modified CF/PLA and (d) fiber pull-out of modified CF/PLA after a tensile test [91].
Materials(30% Vf CF/Onyx) | Stacking sequence | Tensile modulus(GPa) | Tensile strength (MPa) |
---|---|---|---|
4CF-centered | ![]() | 25 | 317 |
4CF-separated | ![]() | 25 | 342 |
6CF-centered | ![]() | 36 | 451 |
6CF-separated | ![]() | 39 | 516 |
Table 3. Tensile modulus and strength of FDM-fabricated FRCs with different configurations of CF layers (blue color) and matrix layers (orange color) (data from [96]).
Materials(30% Vf CF/Onyx) | Stacking sequence | Tensile modulus(GPa) | Tensile strength (MPa) |
---|---|---|---|
4CF-centered | ![]() | 25 | 317 |
4CF-separated | ![]() | 25 | 342 |
6CF-centered | ![]() | 36 | 451 |
6CF-separated | ![]() | 39 | 516 |
Fig. 17. SEM images of the tensile fracture surfaces of (a) FRCs with 4CF-centered; (b) FRCs with 4CF-seperated showing interfaces (S-S) between printed matrix lines [96].
Fig. 20 (a) Tensile strength vs. tensile modulus of AM-fabricated continuous FRCs; (b) tensile strength vs. fiber volume fraction of different AM-fabricated continuous FRCs (data from [[88], [89], [90], [91], [92], [93],96,99,105,106,[108], [109], [110], [111], [112],115,130,133,[136], [137], [138], [139], [140], [141]). (b) shows the tensile strength versus fiber volume fraction of continuous FRCs fabricated by different AM techniques. Major observations are as follows.
Application | Material | Materials | Industry(Company) |
---|---|---|---|
Footbridge [ | ![]() | Continuous GF reinforced thermoplastic (Recycled matrix material) | Infrastructure and Construction (Composite Additive Manufacturing) |
Bicycle frames [ | ![]() | Continuous CF reinforced thermoplastic | Sport (Arevo) |
Helicopter blades mold [ | ![]() | Carbon nanofiber reinforced PESU (Autoclave processable matrix material) | Additive Manufacturing (Thermwood) |
Tools for vehicle maintenance [ | ![]() | Continuous CF reinforced Onyx | Automotive (Dayco) |
Unmanned aerial vehicle [ | ![]() | Continuous CF reinforced thermoplastic with thermoset wrapping | Additive Manufacturing (Anisoprint) |
Coordinate measurement machine (CMM) fixtures [ | ![]() | Discontinuous CF reinforced PA | Aerospace (JJ Churchill Ltd.) |
Molds and prototypes [ | ![]() | Continuous GF reinforced Onyx | Electrical Engineering (Fischer Connectors) |
Robotic arm [ | ![]() | Continuous CF reinforced PA | Artificial Intelligence(Haddington Dynamics) |
Table 4. Applications of AM-fabricated fiber reinforced composites.
Application | Material | Materials | Industry(Company) |
---|---|---|---|
Footbridge [ | ![]() | Continuous GF reinforced thermoplastic (Recycled matrix material) | Infrastructure and Construction (Composite Additive Manufacturing) |
Bicycle frames [ | ![]() | Continuous CF reinforced thermoplastic | Sport (Arevo) |
Helicopter blades mold [ | ![]() | Carbon nanofiber reinforced PESU (Autoclave processable matrix material) | Additive Manufacturing (Thermwood) |
Tools for vehicle maintenance [ | ![]() | Continuous CF reinforced Onyx | Automotive (Dayco) |
Unmanned aerial vehicle [ | ![]() | Continuous CF reinforced thermoplastic with thermoset wrapping | Additive Manufacturing (Anisoprint) |
Coordinate measurement machine (CMM) fixtures [ | ![]() | Discontinuous CF reinforced PA | Aerospace (JJ Churchill Ltd.) |
Molds and prototypes [ | ![]() | Continuous GF reinforced Onyx | Electrical Engineering (Fischer Connectors) |
Robotic arm [ | ![]() | Continuous CF reinforced PA | Artificial Intelligence(Haddington Dynamics) |
Method | Materials | ET (GPa) | σT(MPa) | Other properties | Refs. | |
---|---|---|---|---|---|---|
EF(GPa) | σF (MPa) | |||||
2 wt.% CF/PA12 | 1.5 ± 0.13 | 54 ± 1.5 | 1.8 | 3 | ||
4 wt.% CF/PA12 | 2.0 ± 0.06 | 59 ± 3.7 | 2.6 | 71 | ||
6 wt.% CF/PA12 | 2.8 ± 0.11 | 78 ± 2.1 | 4.2 | 96 | [ | |
8 wt.% CF/PA12 | 3.4 ± 0.15 | 88 ± 6.4 | 4.5 | 108 | ||
10 wt.% CF/PA12 | 3.6 ± 0.24 | 94 ± 1.4 | 5.3 | 125 | ||
20 wt.% CF/PA6 | 6.2 | 52 | EC(GPa) 3.9 | σC (MPa) 56 | [ | |
Onyx (CF/PA6) | 2.4 | 40 | EF(GPa) 3.1 | σF(MPa) 71 | [ | |
Onyx (CF/PA6) | 1.4 | 30 | EF(GPa) 2.9 | σF (MPa) 81 | [ | |
6 wt.% CF/PA | - | - | G (GPa) 0.3 | σS(MPa) 19 | [ | |
EF (GPa) | σF(MPa) | |||||
6 wt.% CF/PA6 | 1.9 | 34 | 3.0 | 55 | [ | |
17 wt.% CF/PA6 | 4.6 | 84 | 7.5 | 138 | ||
12 wt.% CF/PA6 T= 200 °C HDPF | 17.5 ± 2.5 | 250 ± 15.0 | - | - | ||
12 wt.% CF/PA6 T= 260 °C HPDF | 17.5 ± 1.5 | 200 ± 5.0 | - | - | ||
FDM | 12 wt.% CF/PLA T= 170 °C HPDF | 20.5 ± 3.1 | 220 ± 3.0 | - | - | [ |
12 wt.% CF/PLA T= 210 °C HPDF | 24.5 ± 2.5 | 300 ± 80 | - | - | [ | |
12 wt.% CF/ABS T= 177 °C HPDF | 13.5 ± 2.5 | 90 ± 10.0 | - | - | ||
12 wt.% CF/ABS T= 260 °C HPDF | 25.0 ± 1.5 | 320 ± 19.1 | - | - | ||
20 wt.% CF/ABS (longitudinal) | 11.9 | 66 | - | - | ||
20 wt.% CF/ABS (transverse) | 2.1 | 10 | - | - | [ | |
20 wt.% GF/ABS | 5.7 | 54 | - | - | ||
40 wt.% GF/ABS | 10.8 | 51 | - | - | ||
15 wt.% CF/ABS (longitudinal) | 8.9 | 71 | - | - | [ | |
15 wt.% CF/ABS (transverse) | 1.5 | 7 | - | - | ||
10 wt.% CF/ABS | 7.7 | 52 | - | - | ||
20 wt.% CF/ABS | 11.5 ± 0.5 | 60 ± 1.0 | - | - | ||
30 wt.% CF/ABS | 13.8 | 62 | - | - | [ | |
40 wt.% CF/ABS | 13.7 | 67 | - | - | ||
3 wt.% CF/ABS | 2.1 | 40 | - | - | ||
5 wt.% CF/ABS 100μm fiber | 1.2 | 39 | - | - | ||
5 wt.% CF/ABS 150μm fiber | 2.4 | 43 | EF(GPa) 2.9 | σF (MPa) 67 | [ | |
7.5 wt.% CF/ABS | 2.5 | 43 | - | - | ||
10 wt.% CF/ABS | 2.2 | 34 | - | - | ||
15 wt.% CF/ABS | 2.3 | 36 | - | - | ||
5 wt.% CF/ABS T=200 °C | 0.68 | 23 | - | - | ||
5 wt.% CF/ABS T=210 °C | 0.75 | 25 | - | - | [ | |
5 wt.% CF/ABS T=220 °C | 0.89 | 32 | - | - | ||
5 wt.% CF/ABS T=230 °C | 0.68 | 22 | - | - | [ | |
5 wt.% CF/ABS T=240 °C | 0.65 | 18 | - | - | ||
FDM | 15 wt.% CF/ABS 0° Raster | 5.9 | 39 | - | - | [ |
15 wt.% CF/ABS -45°/45° Raster | 2.8 | 29 | - | - | ||
15 wt.% CF/ABS 90° Raster | 2.2 | 14 | - | - | ||
20 wt.% CF/ABS | 8.4 | 67 | - | - | [ | |
4 wt.% xGnP/ABS | 2.6 | 36 | - | - | ||
8 wt.% xGnP/ABS | 3.5 | 38 | - | - | [ | |
15 wt.% CF/PLA (longitudinal) | 7.5 | 53 | - | - | ||
15 wt.% CF/PLA (transverse) | 3.9 | 35 | - | - | [ | |
EF (GPa) | σF (MPa) | |||||
5 wt.% CF/PEEK | - | 94 ± 2.0 | - | 156 ± 4.5 | ||
10 wt.% CF/PEEK | - | 85 ± 3.5 | - | 151± 3.1 | ||
15 wt.% CF/PEEK | 4.0 (calculated) | 83 ± 1.3 | - | 147 ± 2.2 | [ | |
5 wt.% GF/PEEK | - | 94 ± 3.0 | - | 165 ± 3.0 | ||
10 wt.% GF/PEEK | - | 83 ± 3.9 | - | 152 ± 4.2 | ||
15 wt.% GF/PEEK | - | 79 ± 2.3 | - | 151 ± 1.6 | ||
EF(GPa) | σF (MPa) | |||||
3.5% Vf KF/EPON826 | - | - | 3.8 | 78 | ||
DIW | 6.3% Vf KF/EPON826 | - | - | 4.2 | 108 | [ |
B33 Photocurable (33 wt.% Ar/PA) | 2.6 | 35 | - | - | ||
B50 Photocurable (50 wt.% Ar/PA) | 2.7 | 16 | - | - | [ | |
Method | Materials | ET (GPa) | σT (MPa) | Other properties | Refs. | |
GF/B33 | 3.5 | 42 | - | - | ||
DIW | CF/B50 | 3.9 | 31 | - | - | [ |
CF/B50 (with sizing) | 4.4 | 34 | - | - | ||
CF/PA12 - x direction | 6.3 | 67 | - | - | ||
CF/PA12 - y direction | 3.6 | 54 | - | - | ||
CF/PA12 - xy direction | 4.1 | 57 | - | - | [ | |
CF/PA12 - x 45° | 2.4 | 31 | - | - | ||
CF/PA12 - y 45° | 2.1 | 32 | - | - | ||
CF/PA12 - xy 45° | 2.1 | 31 | - | - | ||
EF (GPa) | σF (MPa) | |||||
30wt.% CF/PA12 | - | - | 2.7 | 76 | ||
40wt.% CF/PA12 | - | - | 3.2 | 97 | [ | |
50wt.% CF/PA12 | - | - | 4.7 | 113 | ||
3 wt.% CNFs/PA12 | - | - | E′ (GPa) 1.2 | [ | ||
EF(GPa) | σF (MPa) | |||||
SLS | 30 wt.% CF/PA12 | 5.5 | 72 | 5.3 | 106 | [ |
30 wt.% CF/PA12 HNO3 and heat | 5.8 | 80 | 5.9 | 114 | ||
CF/PA12/Epoxy | - | 101 | σF(MPa) 153 | [ | ||
10 wt.% CF/PEEK | 2.8 | 89 | - | - | [ | |
EF (GPa) | σF(MPa) | |||||
5 wt.% CF/PEEK | 7.4 | 90 | 6.1 | 183 | ||
10 wt.% CF/PEEK | 7.5 | 109 | 5.2 | 170 | ||
15 wt.% CF/PEEK | 7.3 | 70 | 6.1 | 150 | ||
20 wt.% CF/PEEK | 6 | 50 | 4.9 | 80 | [ | |
10 wt.% CF/PEEK Thickness=0.1mm | 7.4 | 109 | - | - | ||
10 wt.% CF/PEEK Thickness=0.15mm | 5.5 | 50 | - | - | ||
10 wt.% CF/PEEK Thickness=0.2mm | 4.1 | 40 | - | - | [ | |
0.5 wt.% CNCs/SLR | 3.4 | 74 | - | - | ||
1 wt.% CNCs /SLR | 3.6 | 77 | - | - | [ | |
2 wt.% CNCs /SLR | 3.9 | 82 | - | - | ||
1 wt.% SiO2 /SLR | 1.7 | 46 | - | - | ||
SLA | 3 wt.% SiO2/SLR | 2.0 | 50 | - | - | [ |
5 wt.% SiO2/SLR | 2.7 | 54 | - | - | ||
0.1 wt.% GO/Grey resin | - | 45 | - | - | [ | |
0.5 wt.% GO/Grey resin | - | 55 | - | - | ||
Method | Materials | ET (GPa) | σT (MPa) | Other properties | Refs. | |
1 wt.% GO/Grey resin | - | 60 | - | - | [ | |
10 wt.% GF/LCR | 0.2 | 15 | - | - | ||
20 wt.% GF/LCR | 0.2 | 16 | - | - | ||
SLA | 30 wt.% GF/LCR | 0.4 | 17 | - | - | [ |
40 wt.% GF/LCR | 0.5 | 20 | - | - | ||
50 wt.% GF/LCR | 1.0 | 22 | - | - | ||
7% Vf GF/Ar | - | 27 | - | - | [ |
Table A1. Summary of mechanical properties for AM-fabricated discontinuous fiber-reinforced composites (ET: Tensile modulus, σT: Tensile strength, EC: Compressive modulus, σC: Compressive strength, EF: Flexural modulus, σF: Flexural strength, G: Shear modulus, σS: Shear strength, E′: Storage modulus, KV: Charpy V-notch, ε: Strain).
Method | Materials | ET (GPa) | σT(MPa) | Other properties | Refs. | |
---|---|---|---|---|---|---|
EF(GPa) | σF (MPa) | |||||
2 wt.% CF/PA12 | 1.5 ± 0.13 | 54 ± 1.5 | 1.8 | 3 | ||
4 wt.% CF/PA12 | 2.0 ± 0.06 | 59 ± 3.7 | 2.6 | 71 | ||
6 wt.% CF/PA12 | 2.8 ± 0.11 | 78 ± 2.1 | 4.2 | 96 | [ | |
8 wt.% CF/PA12 | 3.4 ± 0.15 | 88 ± 6.4 | 4.5 | 108 | ||
10 wt.% CF/PA12 | 3.6 ± 0.24 | 94 ± 1.4 | 5.3 | 125 | ||
20 wt.% CF/PA6 | 6.2 | 52 | EC(GPa) 3.9 | σC (MPa) 56 | [ | |
Onyx (CF/PA6) | 2.4 | 40 | EF(GPa) 3.1 | σF(MPa) 71 | [ | |
Onyx (CF/PA6) | 1.4 | 30 | EF(GPa) 2.9 | σF (MPa) 81 | [ | |
6 wt.% CF/PA | - | - | G (GPa) 0.3 | σS(MPa) 19 | [ | |
EF (GPa) | σF(MPa) | |||||
6 wt.% CF/PA6 | 1.9 | 34 | 3.0 | 55 | [ | |
17 wt.% CF/PA6 | 4.6 | 84 | 7.5 | 138 | ||
12 wt.% CF/PA6 T= 200 °C HDPF | 17.5 ± 2.5 | 250 ± 15.0 | - | - | ||
12 wt.% CF/PA6 T= 260 °C HPDF | 17.5 ± 1.5 | 200 ± 5.0 | - | - | ||
FDM | 12 wt.% CF/PLA T= 170 °C HPDF | 20.5 ± 3.1 | 220 ± 3.0 | - | - | [ |
12 wt.% CF/PLA T= 210 °C HPDF | 24.5 ± 2.5 | 300 ± 80 | - | - | [ | |
12 wt.% CF/ABS T= 177 °C HPDF | 13.5 ± 2.5 | 90 ± 10.0 | - | - | ||
12 wt.% CF/ABS T= 260 °C HPDF | 25.0 ± 1.5 | 320 ± 19.1 | - | - | ||
20 wt.% CF/ABS (longitudinal) | 11.9 | 66 | - | - | ||
20 wt.% CF/ABS (transverse) | 2.1 | 10 | - | - | [ | |
20 wt.% GF/ABS | 5.7 | 54 | - | - | ||
40 wt.% GF/ABS | 10.8 | 51 | - | - | ||
15 wt.% CF/ABS (longitudinal) | 8.9 | 71 | - | - | [ | |
15 wt.% CF/ABS (transverse) | 1.5 | 7 | - | - | ||
10 wt.% CF/ABS | 7.7 | 52 | - | - | ||
20 wt.% CF/ABS | 11.5 ± 0.5 | 60 ± 1.0 | - | - | ||
30 wt.% CF/ABS | 13.8 | 62 | - | - | [ | |
40 wt.% CF/ABS | 13.7 | 67 | - | - | ||
3 wt.% CF/ABS | 2.1 | 40 | - | - | ||
5 wt.% CF/ABS 100μm fiber | 1.2 | 39 | - | - | ||
5 wt.% CF/ABS 150μm fiber | 2.4 | 43 | EF(GPa) 2.9 | σF (MPa) 67 | [ | |
7.5 wt.% CF/ABS | 2.5 | 43 | - | - | ||
10 wt.% CF/ABS | 2.2 | 34 | - | - | ||
15 wt.% CF/ABS | 2.3 | 36 | - | - | ||
5 wt.% CF/ABS T=200 °C | 0.68 | 23 | - | - | ||
5 wt.% CF/ABS T=210 °C | 0.75 | 25 | - | - | [ | |
5 wt.% CF/ABS T=220 °C | 0.89 | 32 | - | - | ||
5 wt.% CF/ABS T=230 °C | 0.68 | 22 | - | - | [ | |
5 wt.% CF/ABS T=240 °C | 0.65 | 18 | - | - | ||
FDM | 15 wt.% CF/ABS 0° Raster | 5.9 | 39 | - | - | [ |
15 wt.% CF/ABS -45°/45° Raster | 2.8 | 29 | - | - | ||
15 wt.% CF/ABS 90° Raster | 2.2 | 14 | - | - | ||
20 wt.% CF/ABS | 8.4 | 67 | - | - | [ | |
4 wt.% xGnP/ABS | 2.6 | 36 | - | - | ||
8 wt.% xGnP/ABS | 3.5 | 38 | - | - | [ | |
15 wt.% CF/PLA (longitudinal) | 7.5 | 53 | - | - | ||
15 wt.% CF/PLA (transverse) | 3.9 | 35 | - | - | [ | |
EF (GPa) | σF (MPa) | |||||
5 wt.% CF/PEEK | - | 94 ± 2.0 | - | 156 ± 4.5 | ||
10 wt.% CF/PEEK | - | 85 ± 3.5 | - | 151± 3.1 | ||
15 wt.% CF/PEEK | 4.0 (calculated) | 83 ± 1.3 | - | 147 ± 2.2 | [ | |
5 wt.% GF/PEEK | - | 94 ± 3.0 | - | 165 ± 3.0 | ||
10 wt.% GF/PEEK | - | 83 ± 3.9 | - | 152 ± 4.2 | ||
15 wt.% GF/PEEK | - | 79 ± 2.3 | - | 151 ± 1.6 | ||
EF(GPa) | σF (MPa) | |||||
3.5% Vf KF/EPON826 | - | - | 3.8 | 78 | ||
DIW | 6.3% Vf KF/EPON826 | - | - | 4.2 | 108 | [ |
B33 Photocurable (33 wt.% Ar/PA) | 2.6 | 35 | - | - | ||
B50 Photocurable (50 wt.% Ar/PA) | 2.7 | 16 | - | - | [ | |
Method | Materials | ET (GPa) | σT (MPa) | Other properties | Refs. | |
GF/B33 | 3.5 | 42 | - | - | ||
DIW | CF/B50 | 3.9 | 31 | - | - | [ |
CF/B50 (with sizing) | 4.4 | 34 | - | - | ||
CF/PA12 - x direction | 6.3 | 67 | - | - | ||
CF/PA12 - y direction | 3.6 | 54 | - | - | ||
CF/PA12 - xy direction | 4.1 | 57 | - | - | [ | |
CF/PA12 - x 45° | 2.4 | 31 | - | - | ||
CF/PA12 - y 45° | 2.1 | 32 | - | - | ||
CF/PA12 - xy 45° | 2.1 | 31 | - | - | ||
EF (GPa) | σF (MPa) | |||||
30wt.% CF/PA12 | - | - | 2.7 | 76 | ||
40wt.% CF/PA12 | - | - | 3.2 | 97 | [ | |
50wt.% CF/PA12 | - | - | 4.7 | 113 | ||
3 wt.% CNFs/PA12 | - | - | E′ (GPa) 1.2 | [ | ||
EF(GPa) | σF (MPa) | |||||
SLS | 30 wt.% CF/PA12 | 5.5 | 72 | 5.3 | 106 | [ |
30 wt.% CF/PA12 HNO3 and heat | 5.8 | 80 | 5.9 | 114 | ||
CF/PA12/Epoxy | - | 101 | σF(MPa) 153 | [ | ||
10 wt.% CF/PEEK | 2.8 | 89 | - | - | [ | |
EF (GPa) | σF(MPa) | |||||
5 wt.% CF/PEEK | 7.4 | 90 | 6.1 | 183 | ||
10 wt.% CF/PEEK | 7.5 | 109 | 5.2 | 170 | ||
15 wt.% CF/PEEK | 7.3 | 70 | 6.1 | 150 | ||
20 wt.% CF/PEEK | 6 | 50 | 4.9 | 80 | [ | |
10 wt.% CF/PEEK Thickness=0.1mm | 7.4 | 109 | - | - | ||
10 wt.% CF/PEEK Thickness=0.15mm | 5.5 | 50 | - | - | ||
10 wt.% CF/PEEK Thickness=0.2mm | 4.1 | 40 | - | - | [ | |
0.5 wt.% CNCs/SLR | 3.4 | 74 | - | - | ||
1 wt.% CNCs /SLR | 3.6 | 77 | - | - | [ | |
2 wt.% CNCs /SLR | 3.9 | 82 | - | - | ||
1 wt.% SiO2 /SLR | 1.7 | 46 | - | - | ||
SLA | 3 wt.% SiO2/SLR | 2.0 | 50 | - | - | [ |
5 wt.% SiO2/SLR | 2.7 | 54 | - | - | ||
0.1 wt.% GO/Grey resin | - | 45 | - | - | [ | |
0.5 wt.% GO/Grey resin | - | 55 | - | - | ||
Method | Materials | ET (GPa) | σT (MPa) | Other properties | Refs. | |
1 wt.% GO/Grey resin | - | 60 | - | - | [ | |
10 wt.% GF/LCR | 0.2 | 15 | - | - | ||
20 wt.% GF/LCR | 0.2 | 16 | - | - | ||
SLA | 30 wt.% GF/LCR | 0.4 | 17 | - | - | [ |
40 wt.% GF/LCR | 0.5 | 20 | - | - | ||
50 wt.% GF/LCR | 1.0 | 22 | - | - | ||
7% Vf GF/Ar | - | 27 | - | - | [ |
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Refs. | |
---|---|---|---|---|---|---|---|---|
27% Vf CF/PA | 62.5 | 968 | 41.6 | 485 | G (GPa) 2.3 | σS(MPa) 31 | [ | |
EC (GPa) | σC (MPa) | |||||||
40% Vf CF/PA | 60 | 800 | 51 | 540 | 54 | 320 | ||
40% Vf GF/PA | 21 | 590 | 22 | 200 | 21 | 140 | [ | |
40% Vf KF/PA | 27 | 610 | 26 | 240 | 28 | 97 | ||
CF filaments (PA6 as sizing agent) | 61.0 | 767 | 35.8 | 546 | - | - | [ | |
CF with compression | 83.2 | 940 | 57.3 | 1052 | - | - | ||
41% Vf CF/PA | 13 | 600 | 38 | 430 | - | - | [ | |
35% Vf GF/PA | 7 | 450 | 15 | 149 | - | - | ||
FDM | 6% Vf CF/PA | 14 | 140 | - | - | - | - | [ |
18% Vf CF/PA | 36 | 464 | - | - | - | - | ||
11% Vf CF/PA | 7.7 | 216 | 13.0 | 250 | - | - | [ | |
8% Vf GF/PA | 3.1 | 194 | 3.9 | 166 | - | - | ||
10% Vf GF/PA | 3.8 | 206 | 4.2 | 197 | - | - | ||
8% Vf KF/PA | 3.6 | 150 | 4.6 | 107 | - | - | ||
10% Vf KF/PA | 4.4 | 164 | 6.7 | 126 | - | - | ||
4% Vf KF/PA | 1.8 | 31 | - | - | - | - | [ | |
8% Vf KF/PA | 6.9 | 60 | - | - | - | - | ||
10% Vf KF/PA | 9.0 | 84 | - | - | - | - | ||
35% Vf CF/PA | 71.2 | 777 | 52 | 583 | - | - | [ | |
35% Vf CF/PA_3DCP With compaction | 71.2 | 1031 | 66 | 945 | - | - | ||
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Refs. | |
EC (GPa) | σC (MPa) | |||||||
41% Vf CF/PA | 68 | 701 | - | - | 53 | 223 | [ | |
50% Vf GF/PA | 26 | 575 | - | - | 20 | 82 | ||
EC (GPa) | σC(MPa) | |||||||
8.18% Vf CF/PA | - | - | - | - | 1.5 | 40 | ||
16.59% Vf CF/PA | - | - | - | - | 1.9 | 43 | ||
17.18% Vf CF/PA | - | - | 5.2 | 84 | - | - | [ | |
24.44% Vf CF/PA | - | - | - | - | 2.1 | 53 | ||
32.19% Vf CF/PA | - | - | 8.9 | 143 | - | - | ||
48.93% Vf CF/PA | - | - | 14.2 | 231 | - | - | ||
σS (MPa) | ||||||||
27.2% Vf CF/PA | - | - | - | - | 22.2 | |||
27.2% Vf GF/PA | - | - | - | - | 13.9 | |||
FDM | 27.2% Vf KF/PA | - | - | - | - | 13.7 | [ | |
73.2% Vf CF/PA | - | - | - | - | 31.9 | |||
73.2% Vf GF/PA | - | - | - | - | 21.0 | |||
73.2% Vf KF/PA | - | - | - | - | 14.3 | |||
KV(kJ/m2) | ||||||||
24.9% Vf CF/PA | - | - | - | - | 33 | |||
29.2% Vf GF/PA | - | - | - | - | 207 | [ | ||
29.5% Vf KF/PA | - | - | - | - | 84 | |||
EC (GPa) | σC(MPa) | [ | ||||||
31.4% Vf CF/PA | 69.4 | 905 | - | - | 63.9 | 426 | ||
KV (kJ/m2) | ||||||||
CF/PEEK | - | - | 37 | 480 | 56 | [ | ||
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Refs. | |
KV(kJ/m2) | ||||||||
10 wt% or 8.9% Vf CF/PLA | 20.6 | 256 | 14.5 | 220 | 35 for original CF/PLA | [ | ||
10 wt% or 8.9% Vf CF/PLA (Recycled) | 20.6 | 260 | 13.3 | 263 | 39 for recycled CF/PLA | |||
25% CF/PLA | - | - | 30 | 335 | - | - | [ | |
6.6% Vf CF/PLA | 19.5 | 185 | - | - | - | - | [ | |
6.1% Vf Jute/PLA | 5.1 | 57 | - | - | - | - | ||
34% Vf CF/PLA | 23.8 (calculated) | 80 | - | 59 | - | - | [ | |
34% Vf CF/PLA With sizing | - | 91 | - | 156 | - | - | ||
8.6% Vf AF/PLA | 9.3 | 203 | - | - | - | - | [ | |
6.7% Vf AF/PLA | 14.2 | 150 | - | - | - | - | ||
FDM | 20% Vf AF/PLA | 24.5 | 330 | - | - | - | - | |
30% Vf AF/PLA | 26.6 | 360 | - | - | - | - | [ | |
40% Vf AF/PLA | 40.0 | 660 | - | - | - | - | ||
50% Vf AF/PLA | 40.0 | 750 | - | - | - | - | ||
30% Vf CF/PLA | 49.1 | 393 | 25.1 | 157 | - | - | [ | |
30% Vf CF/PLA With compaction | 63.9 | 536 | 24.0 | 222 | - | - | ||
10% Vf CF/PLA | - | 110 | - | 163 | - | - | [ | |
10% Vf CF/PLA With compaction | - | 645 | - | 401 | - | - | ||
10 wt% CF/ABS | 4.2 | 147 | - | 127 | - | - | [ | |
15.16% Vf CF/Onyx | 13 | 160 | - | - | - | - | ||
30.10% Vf CF/Onyx | 25 | 330 | - | - | - | - | [ | |
47.50% Vf CF/Onyx | 39 | 490 | - | - | - | - | ||
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Ref. | |
71.33% Vf CF/Onyx | 48 | 570 | - | - | - | - | [ | |
15% Vf CF/Onyx | 21.1 | 224 | - | - | - | - | [ | |
FDM | 27% Vf CF/Onyx | 60.9 | 780 | - | - | - | - | [ |
38.27 wt.% CF/PEEK | - | - | 37 | 480 | - | - | [ | |
54.8 wt.% GF/PP | - | - | 13 | - | - | - | [ | |
7 gm-2 CF/Ar | 1.8 | 44 | - | - | - | - | ||
17 gm-2 CF/Ar | 2.5 | 42 | - | - | - | - | ||
17 gm-2 KF/Ar | 2.1 | 30 | - | - | - | - | ||
7 gm-2 GF/Ar | 2.2 | 44 | - | - | - | - | [ | |
SLA | 17 gm-2 GF/Ar | 2.9 | 55 | - | - | - | - | |
34 gm-2 GF/Er | 2.8 | 42 | - | - | - | - | ||
50 gm-2 GF/Er | 2.4 | 39 | - | - | - | - | ||
GF/LCR | 1.8 | 79 | - | - | - | - | [ | |
CF/Accura60 resin | 1.0 | 60 | - | - | - | - | [ | |
59% Vf CF/PEEK Without hot-press | 113.8 | 1213 | 89.7 | 671 | - | - | [ | |
59% Vf CF/PEEK With hot-press | 133.1 | 1514 | 125.7 | 1901 | - | - | ||
LOM | 49% Vf CF/PA6 With ultrasound | 105.7 ± 7.2 | 1760 ± 71.7 | 96.5 ± 5.1 | 1026 ± 52.3 | - | - | [ |
55% Vf CF/PA6 | 18.0 | 668 | - | 591 | - | - | [ | |
52%-55% Vf GF/Epoxy | - | 713 | - | 1190 | - | σC(MPa) 896 | [ |
Table A2. Summarized mechanical properties for AM-fabricated continuous fiber-reinforced composites.
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Refs. | |
---|---|---|---|---|---|---|---|---|
27% Vf CF/PA | 62.5 | 968 | 41.6 | 485 | G (GPa) 2.3 | σS(MPa) 31 | [ | |
EC (GPa) | σC (MPa) | |||||||
40% Vf CF/PA | 60 | 800 | 51 | 540 | 54 | 320 | ||
40% Vf GF/PA | 21 | 590 | 22 | 200 | 21 | 140 | [ | |
40% Vf KF/PA | 27 | 610 | 26 | 240 | 28 | 97 | ||
CF filaments (PA6 as sizing agent) | 61.0 | 767 | 35.8 | 546 | - | - | [ | |
CF with compression | 83.2 | 940 | 57.3 | 1052 | - | - | ||
41% Vf CF/PA | 13 | 600 | 38 | 430 | - | - | [ | |
35% Vf GF/PA | 7 | 450 | 15 | 149 | - | - | ||
FDM | 6% Vf CF/PA | 14 | 140 | - | - | - | - | [ |
18% Vf CF/PA | 36 | 464 | - | - | - | - | ||
11% Vf CF/PA | 7.7 | 216 | 13.0 | 250 | - | - | [ | |
8% Vf GF/PA | 3.1 | 194 | 3.9 | 166 | - | - | ||
10% Vf GF/PA | 3.8 | 206 | 4.2 | 197 | - | - | ||
8% Vf KF/PA | 3.6 | 150 | 4.6 | 107 | - | - | ||
10% Vf KF/PA | 4.4 | 164 | 6.7 | 126 | - | - | ||
4% Vf KF/PA | 1.8 | 31 | - | - | - | - | [ | |
8% Vf KF/PA | 6.9 | 60 | - | - | - | - | ||
10% Vf KF/PA | 9.0 | 84 | - | - | - | - | ||
35% Vf CF/PA | 71.2 | 777 | 52 | 583 | - | - | [ | |
35% Vf CF/PA_3DCP With compaction | 71.2 | 1031 | 66 | 945 | - | - | ||
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Refs. | |
EC (GPa) | σC (MPa) | |||||||
41% Vf CF/PA | 68 | 701 | - | - | 53 | 223 | [ | |
50% Vf GF/PA | 26 | 575 | - | - | 20 | 82 | ||
EC (GPa) | σC(MPa) | |||||||
8.18% Vf CF/PA | - | - | - | - | 1.5 | 40 | ||
16.59% Vf CF/PA | - | - | - | - | 1.9 | 43 | ||
17.18% Vf CF/PA | - | - | 5.2 | 84 | - | - | [ | |
24.44% Vf CF/PA | - | - | - | - | 2.1 | 53 | ||
32.19% Vf CF/PA | - | - | 8.9 | 143 | - | - | ||
48.93% Vf CF/PA | - | - | 14.2 | 231 | - | - | ||
σS (MPa) | ||||||||
27.2% Vf CF/PA | - | - | - | - | 22.2 | |||
27.2% Vf GF/PA | - | - | - | - | 13.9 | |||
FDM | 27.2% Vf KF/PA | - | - | - | - | 13.7 | [ | |
73.2% Vf CF/PA | - | - | - | - | 31.9 | |||
73.2% Vf GF/PA | - | - | - | - | 21.0 | |||
73.2% Vf KF/PA | - | - | - | - | 14.3 | |||
KV(kJ/m2) | ||||||||
24.9% Vf CF/PA | - | - | - | - | 33 | |||
29.2% Vf GF/PA | - | - | - | - | 207 | [ | ||
29.5% Vf KF/PA | - | - | - | - | 84 | |||
EC (GPa) | σC(MPa) | [ | ||||||
31.4% Vf CF/PA | 69.4 | 905 | - | - | 63.9 | 426 | ||
KV (kJ/m2) | ||||||||
CF/PEEK | - | - | 37 | 480 | 56 | [ | ||
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Refs. | |
KV(kJ/m2) | ||||||||
10 wt% or 8.9% Vf CF/PLA | 20.6 | 256 | 14.5 | 220 | 35 for original CF/PLA | [ | ||
10 wt% or 8.9% Vf CF/PLA (Recycled) | 20.6 | 260 | 13.3 | 263 | 39 for recycled CF/PLA | |||
25% CF/PLA | - | - | 30 | 335 | - | - | [ | |
6.6% Vf CF/PLA | 19.5 | 185 | - | - | - | - | [ | |
6.1% Vf Jute/PLA | 5.1 | 57 | - | - | - | - | ||
34% Vf CF/PLA | 23.8 (calculated) | 80 | - | 59 | - | - | [ | |
34% Vf CF/PLA With sizing | - | 91 | - | 156 | - | - | ||
8.6% Vf AF/PLA | 9.3 | 203 | - | - | - | - | [ | |
6.7% Vf AF/PLA | 14.2 | 150 | - | - | - | - | ||
FDM | 20% Vf AF/PLA | 24.5 | 330 | - | - | - | - | |
30% Vf AF/PLA | 26.6 | 360 | - | - | - | - | [ | |
40% Vf AF/PLA | 40.0 | 660 | - | - | - | - | ||
50% Vf AF/PLA | 40.0 | 750 | - | - | - | - | ||
30% Vf CF/PLA | 49.1 | 393 | 25.1 | 157 | - | - | [ | |
30% Vf CF/PLA With compaction | 63.9 | 536 | 24.0 | 222 | - | - | ||
10% Vf CF/PLA | - | 110 | - | 163 | - | - | [ | |
10% Vf CF/PLA With compaction | - | 645 | - | 401 | - | - | ||
10 wt% CF/ABS | 4.2 | 147 | - | 127 | - | - | [ | |
15.16% Vf CF/Onyx | 13 | 160 | - | - | - | - | ||
30.10% Vf CF/Onyx | 25 | 330 | - | - | - | - | [ | |
47.50% Vf CF/Onyx | 39 | 490 | - | - | - | - | ||
Method | Materials | ET (GPa) | σT (MPa) | EF (GPa) | σF (MPa) | Other properties | Ref. | |
71.33% Vf CF/Onyx | 48 | 570 | - | - | - | - | [ | |
15% Vf CF/Onyx | 21.1 | 224 | - | - | - | - | [ | |
FDM | 27% Vf CF/Onyx | 60.9 | 780 | - | - | - | - | [ |
38.27 wt.% CF/PEEK | - | - | 37 | 480 | - | - | [ | |
54.8 wt.% GF/PP | - | - | 13 | - | - | - | [ | |
7 gm-2 CF/Ar | 1.8 | 44 | - | - | - | - | ||
17 gm-2 CF/Ar | 2.5 | 42 | - | - | - | - | ||
17 gm-2 KF/Ar | 2.1 | 30 | - | - | - | - | ||
7 gm-2 GF/Ar | 2.2 | 44 | - | - | - | - | [ | |
SLA | 17 gm-2 GF/Ar | 2.9 | 55 | - | - | - | - | |
34 gm-2 GF/Er | 2.8 | 42 | - | - | - | - | ||
50 gm-2 GF/Er | 2.4 | 39 | - | - | - | - | ||
GF/LCR | 1.8 | 79 | - | - | - | - | [ | |
CF/Accura60 resin | 1.0 | 60 | - | - | - | - | [ | |
59% Vf CF/PEEK Without hot-press | 113.8 | 1213 | 89.7 | 671 | - | - | [ | |
59% Vf CF/PEEK With hot-press | 133.1 | 1514 | 125.7 | 1901 | - | - | ||
LOM | 49% Vf CF/PA6 With ultrasound | 105.7 ± 7.2 | 1760 ± 71.7 | 96.5 ± 5.1 | 1026 ± 52.3 | - | - | [ |
55% Vf CF/PA6 | 18.0 | 668 | - | 591 | - | - | [ | |
52%-55% Vf GF/Epoxy | - | 713 | - | 1190 | - | σC(MPa) 896 | [ |
Method | Material | ET(GPa) | σT(MPa) | ε(At break) | Ref. |
---|---|---|---|---|---|
Injection molding | 21 Vf% Short CF/PA66 | 13 | 124 | 1.68% | [ |
31 Vf% Short CF/PA66 | 22 | 150 | 1.26% | ||
20 Vf% Long CF/PA66 | 23 | 158 | 0.97% | ||
32 Vf% Long CF/PA66 | 29 | 173 | 0.78% |
Table A3. Summary of mechanical properties of traditionally fabricated discontinuous fiber reinforced composites.
Method | Material | ET(GPa) | σT(MPa) | ε(At break) | Ref. |
---|---|---|---|---|---|
Injection molding | 21 Vf% Short CF/PA66 | 13 | 124 | 1.68% | [ |
31 Vf% Short CF/PA66 | 22 | 150 | 1.26% | ||
20 Vf% Long CF/PA66 | 23 | 158 | 0.97% | ||
32 Vf% Long CF/PA66 | 29 | 173 | 0.78% |
Method | Material | ET(GPa) | σT(MPa) | σC(MPa) | Refs. |
---|---|---|---|---|---|
Compression Molding | 40% Vf CF/PA6 | 28.3 | 296 | 271 | [ |
50% Vf CF/PA6 | 48.1 | 393 | 323 | ||
60% Vf CF/PA6 | 50.2 | 410 | 367 | ||
78% Vf CF/Epoxy | - | 768 | 418 | [ |
Table A4. Summary of mechanical properties of traditionally fabricated continuous fiber reinforced composites.
Method | Material | ET(GPa) | σT(MPa) | σC(MPa) | Refs. |
---|---|---|---|---|---|
Compression Molding | 40% Vf CF/PA6 | 28.3 | 296 | 271 | [ |
50% Vf CF/PA6 | 48.1 | 393 | 323 | ||
60% Vf CF/PA6 | 50.2 | 410 | 367 | ||
78% Vf CF/Epoxy | - | 768 | 418 | [ |
[1] |
I. Campbell, D. Bourell, I. Gibson, Rapid Prototyp. J. 18 (2012) 255-258.
DOI URL |
[2] |
Y. Li, Y. Lou, Polymers 12 (2020) 2497.
DOI URL |
[3] |
P. Parandoush, D. Lin, Compos. Struct. 182 (2017) 36-53.
DOI URL |
[4] | N. van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, M. Tehrani, Addit. Manuf. 31 (2020) 100962. |
[5] | B. Brenken, E. Barocio, A. Favaloro, V. Kunc, R.B. Pipes, Addit. Manuf. 21 (2018) 1-16. |
[6] |
S.M.F. Kabir, K. Mathur, A.F.M. Seyam, Compos. Struct. 232 (2020) 111476.
DOI URL |
[7] | W. Sachini, D. Truong, T. Phuong, Polymer 12 (2020) 12071529. |
[8] | A.L. Duigou, D. Correa, M. Ueda, R. Matsuzaki, M. Castro, Mater. Des. 194 (2020) 108-911. |
[9] | J. Šafka, M. Ackermann, J. Bobek, M. Seidl, J. Habr, L. B ˇehálek, Mater. Sci. Fo- rum 862 (2016) 174-181. |
[10] |
N.E. Zander, J.H. Park, Z.R. Boelter, M.A. Gillan, ACS Omega 4 (2019) 13879-13888.
DOI URL |
[11] |
A. El Magri, K. El Mabrouk, S. Vaudreuil, M. Ebn. Touhami, J. Thermoplast. Compos. Mater. 34 (2021) 581-595.
DOI URL |
[12] |
L. Lin, N. Ecke, M. Huang, X.Q. Pei, A.K. Schlarb, Compos. Pt. B 177 (2019) 107428.
DOI URL |
[13] | E. Yasa, in:Proceedings of the 29th Annual International Solid Freeform Fab- rication Symposium, Texas, U.S., 2020 July 25-27. |
[14] |
G.D. Goh, Y.L. Yap, S. Agarwala, W.Y. Yeong, Adv. Mater. Technol. 4 (2018) 1800271.
DOI URL |
[15] |
A .R. Torrado Perez, D.A. Roberson, R.B. Wicker, J. Fail. Anal. Prev. 14 (2014) 343-353.
DOI URL |
[16] |
D. Stoof, K. Pickering, Compos. Pt. B-Eng. 135 (2018) 110-118.
DOI URL |
[17] |
F. Gardea, D.P. Cole, B. Glaz, J.C. Riddick, Rapid Prototyp. J. 26 (2019) 509-517.
DOI URL |
[18] |
M.L. Shofner, K. Lozano, F.J. Rodríguez-Macías, E.V. Barrera, J. Appl. Polym. Sci. 89 (2003) 3081-3090.
DOI URL |
[19] |
J. Zhu, B. Wang, Mater. Sci. Forum 898 (2017) 2384-2391.
DOI URL |
[20] |
K. Kinga, Ł. Michał, C. Shih-Yu, L. Wei-Ting, C. An, H.-K. Maria, G. Szymon, M. Janusz, Materials 13 (2020) 579.
DOI URL |
[21] |
K. Qian, X. Qian, Y. Chen, M. Zhou, J. Appl. Polym. Sci. 135 (2018) 46483.
DOI URL |
[22] |
I. Durgun, R. Ertan, Rapid Prototyp. J. 20 (2014) 228-235.
DOI URL |
[23] | Z.C. Kennedy, J.F. Christ, Addit. Manuf. 36 (2020) 101233. |
[24] | I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies -Rapid Prototyping to Direct Digital Manufacturing, Springer, Boston, 2010. |
[25] | C.E. Duty, T. Drye, A. Franc, Material Development for Tooling Applications Using Big Area Additive Manufacturing (BAAM), 2015 Oak Ridge, U.S.. |
[26] |
H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, S. Ozcan, Compos. Sci. Technol. 105 (2014) 144-150.
DOI URL |
[27] |
S.H. Han, H.J. Oh, S.S. Kim, Compos. Pt. B-Eng. 60 (2014) 98-105.
DOI URL |
[28] |
S. Berretta, R. Davies, Y.T. Shyng, Y. Wang, O. Ghita, Polym. Test. 63 (2017) 251-262.
DOI URL |
[29] | L.G. Blok, H. Yu, M.L. Longana, B.K.S. Woods, in:Proceedings of the 18th Eu- ropean Conference on Composite Materials, Athens, Greece, 2018 June 24-28. |
[30] |
G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu, Y. Zhu, Mater. Des. 139 (2018) 283-292.
DOI URL |
[31] |
P. Wang, B. Zou, S. Ding, C. Huang, Z. Shi, Y. Ma, P. Yao, Compos. Pt. B-Eng. 198 (2020) 108175.
DOI URL |
[32] |
F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Compos. Pt. B-Eng. 80 (2015) 369-378.
DOI URL |
[33] | T. Hofstätter, I. Gutmann, T. Koch, D. Pedersen, G. Tosello, G. Heinz, H. Hansen, in: Proceedings of the ASPE Summer Topical Meeting, Raleigh, U. S., 2016 July 11-13. |
[34] |
H. Yu, K.D. Potter, M.R. Wisnom, Compos. Pt. A-Appl. Sci. Manuf. 65 (2014) 175-185.
DOI URL |
[35] |
I. Ferreira, M. Machado, F. Alves, A.T. Marques, Rapid Prototyp. J. 25 (2019) 972-988.
DOI URL |
[36] |
R.T.L. Ferreira, I.C. Amatte, T.A. Dutra, D. Bürger, Compos. Pt. B-Eng. 124 (2017) 88-100.
DOI URL |
[37] | M. Behzadnasab, A. Yousefi, in: Proceedings of the 12th International Seminar on Polymer Science and Technology, Tehran, Iran, 2016 November 2-5. |
[38] |
F. Ning, W. Cong, Y. Hu, H. Wang, J. Compos. Mater. 51 (2017) 451-462.
DOI URL |
[39] | Christine,Comparison of Carbon Fiber, Kevlar®(Aramid) and E Glass used in Composites for Boatbuilding, https://www.christinedemerchant.com/carbon-kevlar-glass-comparison.html (accessed 7 May 2021). |
[40] | C. Hill, K. Rowe, R. Bedsole, J. Earle, V. Kunc, Society for the Advancement of Material and Process Engineering, 2016 May 23-26. |
[41] |
L. Love, V. Kunc, O. Ríos, C. Duty, A. Elliott, B. Post, R.J. Smith, C. Blue, J. Mater. Res. 29 (2014) 1893-1898.
DOI URL |
[42] |
G. Postiglione, G. Natale, G. Griffini, M. Levi, S. Turri, Compos. Pt. A-Appl. Sci. Manuf. 76 (2015) 110-114.
DOI URL |
[43] |
M. Invernizzi, G. Natale, M. Levi, S. Turri, G. Griffini, Materials 9 (2016) 583.
DOI URL |
[44] |
G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione, S. Turri, Polymer 91 (2016) 174-179.
DOI URL |
[45] |
R.L. Truby, J.A. Lewis, Nature 540 (2016) 371-378.
DOI URL |
[46] |
B.G. Compton, J.A. Lewis, Adv. Mater. 26 (2014) 5930-5935.
DOI URL |
[47] | T. George, A.K. Dutta, M.S. Islam, J.J. Martin, A. Caunter, A. Dendulk, S. Goodrich, R. Pembroke, D. Shores, R.M. Erb, Micro- and Nanotechnology Sensors, Systems, and Applications IX, 2017 Bellingham, U.S. April 9-13. |
[48] |
N. Nawafleh, F.K.E. Elibol, M. Aljaghtham, E. Oflaz, A.J. Ciciriello, C.M. Du- mont, E. Dauer, R.M. Gorguluarslan, T. Demir, E. Celik, J. Mater. Sci. 55 (2020) 11284-11295.
DOI URL |
[49] | A. Jansson, L. Pejryd, Addit. Manuf 9 (2016) 7-13. |
[50] | D. Jiang, D.E. Smith, Addit. Manuf. 18 (2017) 84-94. |
[51] |
C. Yan, L. Hao, L. Xu, Y. Shi, Compos. Sci. Technol. 71 (2011) 1834-1841.
DOI URL |
[52] |
G.V. Salmoria, J.L. Leite, L.F. Vieira, A.T.N. Pires, C.R.M. Roesler, Polym. Test. 31 (2012) 411-416.
DOI URL |
[53] |
R.D. Goodridge, M.L. Shofner, R.J.M. Hague, M. McClelland, M.R. Schlea, R.B. Johnson, C.J. Tuck, Polym. Test. 30 (2011) 94-100.
DOI URL |
[54] |
P. Peyre, Y. Rouchausse, D. Defauchy, G. Régnier, J. Mater, Process. Technol. 225 (2015) 326-336.
DOI URL |
[55] |
T.J. Hoskins, K.D. Dearn, S.N. Kukureka, Polym. Test. 70 (2018) 511-519.
DOI URL |
[56] |
B. Chen, S. Berretta, K. Evans, K. Smith, O. Ghita, Appl. Surf. Sci. 428 (2018) 1018-1028.
DOI URL |
[57] |
B. Chen, Y. Wang, S. Berretta, O. Ghita, J. Mater. Sci. 52 (2017) 6004-6019.
DOI URL |
[58] |
Y. Wang, D. Rouholamin, R. Davies, O.R. Ghita, Mater. Des. 88 (2015) 1310-1320.
DOI URL |
[59] |
M. Yan, X. Tian, G. Peng, D. Li, X. Zhang, Compos. Sci. Technol. 165 (2018) 140-147.
DOI URL |
[60] |
W. Zhu, C. Yan, Y. Shi, S. Wen, J. Liu, Q. Wei, Y. Shi, Sci. Rep. 6 (2016) 33780.
DOI PMID |
[61] |
T. Rayna, L. Striukova, Technol. Forecast. Soc. Change 102 (2016) 214-224.
DOI URL |
[62] | Y. Sano, R. Matsuzaki, M. Ueda, A. Todoroki, Y. Hirano, Addit. Manuf. 24 (2018) 521-527. |
[63] | S. Zakeri, M. Vippola, E. Levänen, Addit. Manuf. 35 (2020) 101177. |
[64] | S. Baumgartner, R. Gmeiner, J.A. Schönherr, J. Stampfl, Mater. Sci. Eng. C 116 (2020) 111-180. |
[65] |
S. Kumar, M. Hofmann, B. Steinmann, E.J. Foster, C. Weder, ACS Appl. Mater. Interfaces 4 (2012) 5399-5407.
DOI URL |
[66] |
Z. Weng, Y. Zhou, W. Lin, T. Senthil, L. Wu, Compos. Pt. A-Appl. Sci. Manuf. 88 (2016) 234-242.
DOI URL |
[67] |
J.Z. Manapat, J.D. Mangadlao, B.D.B. Tiu, G.C. Tritchler, R.C. Advincula, ACS Appl. Mater. Interf. 9 (2017) 10085-10093.
DOI URL |
[68] | A. Ogale, T. Renault, R. Dooley, A. Bagchi, C. Jara-almonte, SAMPE J. 23 (1991) 28-38. |
[69] | P.W. Huang, H.S. Peng, S.J. Hwang, C.T. Huang, P.C. Chen, Y.Y. Ke, P.S. Pan, C.C. Wu, C.I. Tu, 77th Annual Technical Conference of the Society of Plastics Engineers, 2019 March 18-21. |
[70] |
A.L.N. Inácio, R.C. Nonato, B.C. Bonse, Polym. Test. 72 (2018) 357-363.
DOI URL |
[71] |
Y.P. Zhang, C.G. Zhou, W.J. Sun, T. Wang, L.C. Jia, D.X. Yan, Z.M. Li, Compos. Sci. Technol. 197 (2020) 108253.
DOI URL |
[72] | K. Enomoto, New Diamond Front. Carbon Technol. 15 (2005) 59-72. |
[73] | M.P. Kujawski, ASME 2006 International Mechanical Engineering Congress and Exposition, 2006 November 5-10. |
[74] |
E. Verdejo de Toro, J. Coello Sobrino, A. Martínez Martínez, V. Miguel Eguía, J. Ayllón Pérez, Materials 13 (2020) 672.
DOI URL |
[75] |
A. Hassan, P.R. Hornsby, M.J. Folkes, Polym. Test. 22 (2003) 185-189.
DOI URL |
[76] | EOS,EOS Material Data Center, https://eos.materialdatacenter.com/eo/en (acessed 9 May 2021). |
[77] | Markforged,Material data sheet, composites, https://static.markforged.com/markforged_composites_datasheet.pdf (accessed8October2021). |
[78] | F. Bárnik, M. Vaško, M. Handrik, F. Dor ˇciak, J. Majko, Transp. Res. Proc. 40 (2019) 616-622. |
[79] |
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Compos. Pt. B-Eng. 143 (2018) 172-196.
DOI URL |
[80] |
A. Gupta, A.A. Ogale, Polym. Compos. 23 (2002) 1162-1170.
DOI URL |
[81] | D. Karalekas, K. Antoniou, J. Mater. Process. Technol. 153 (2004) 526-530. |
[82] |
S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Int. J. Adv. Manuf. Technol. 67 (2013) 1191-1203.
DOI URL |
[83] |
N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Adv. Eng. Mater. 16 (2014) 729-754.
DOI URL |
[84] |
F.N. Chaudhry, S.I. Butt, A. Mubashar, A.B. Naveed, S.H. Imran, Z. Faping, J. Thermoplast. Compos. Mater. 35 (2019) 352-374.
DOI URL |
[85] |
M. Heidari-Rarani, M. Rafiee-Afarani, A.M. Zahedi, Compos. Pt. B-Eng. 175 (2019) 107147.
DOI URL |
[86] | Q. Hu, Y. Duan, H. Zhang, D. Liu, B. Yan, F. Peng, J. Mater. Sci. Lett. 53 (2018) 1887-1898. |
[87] |
Y. Nakagawa, K.-i. Mori, T. Maeno, Int. J. Adv. Manuf. Technol. 91 (2017) 2811.
DOI URL |
[88] |
M. Ryosuke, U. Masahito, N. Masaki, J. Tae-Kun, A. Hirosuke, H. Keisuke, N. Taishi, T. Akira, H. Yoshiyasu, Sci. Rep. 6 (2016) 23058.
DOI URL |
[89] | A.N. Dickson, J.N. Barry, K.A. McDonnell, D.P. Dowling, Addit. Manuf. 16 (2017) 146-152. |
[90] |
J. Justo, L. Távara, L. García-Guzmán, F. París, Compos. Struct. 185 (2018) 537-548.
DOI URL |
[91] |
N. Li, Y. Li, S. Liu, J. Mater, Process. Technol. 238 (2016) 218-225.
DOI URL |
[92] |
G.W. Melenka, B.K.O. Cheung, J.S. Schofield, M.R. Dawson, J.P. Carey, Compos. Struct. 153 (2016) 866-875.
DOI URL |
[93] | F. van der Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, R. Matsuzaki, J. Com- pos. Mater. 6 (2016) 18-27. |
[94] |
C. Yang, X. Tian, T. Liu, Y. Cao, D. Li, Rapid Prototyp. J. 23 (2017) 209-215.
DOI URL |
[95] | H. Mei, Z. Ali, Y. Yan, I. Ali, L. Cheng, Addit. Manuf. 27 (2019) 150-158. |
[96] |
Y. Peng, Y. Wu, K. Wang, G. Gao, S. Ahzi, Compos. Struct. 207 (2019) 232-239.
DOI URL |
[97] |
M.A. Caminero, J.M. Chacón, I. García-Moreno, G.P. Rodríguez, Compos. Pt. B-Eng. 148 (2018) 93-103.
DOI URL |
[98] |
M. Luo, X. Tian, J. Shang, W. Zhu, D. Li, Y. Qin, Compos. Pt. A-Appl. Sci. Manuf. 121 (2019) 130-138.
DOI URL |
[99] |
X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li, G. Ziegmann, J. Cleaner Prod. 142 (2017) 1609-1618.
DOI URL |
[100] |
A.D. Pertuz, S. Díaz-Cardona, O.A. González-Estrada, Int. J. Fatigue 130 (2020) 105275.
DOI URL |
[101] | X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Composites 88 (2016) 198-205. |
[102] |
T. Liu, X. Tian, M. Zhang, D. Abliz, D. Li, G. Ziegmann, Compos. Pt. A-Appl. Sci. Manuf. 114 (2018) 368-376.
DOI URL |
[103] |
M.A. Montes-Morán, A. Martı´nez-Alonso, J.M.D. Tascón, M.C. Paiva, C.A. Bernardo, Carbon 39 (2001) 1057-1068.
DOI URL |
[104] |
J. Li, Appl. Surf. Sci. 255 (2008) 2822-2824.
DOI URL |
[105] |
Z. Hou, X. Tian, Z. Zheng, J. Zhang, L. Zhe, D. Li, A.V. Malakhov, A.N. Polilov, Compos. Pt. B-Eng. 189 (2020) 107893.
DOI URL |
[106] | M. Araya-Calvo, I. López-Gómez, N. Chamberlain-Simon, J.L. León-Salazar, T. Guillén-Girón, J.S. Corrales-Cordero, O. Sánchez-Brenes, Addit. Manuf. 22 (2018) 157-164. |
[107] |
M.A. Caminero, J.M. Chacón, I. García-Moreno, J.M. Reverte, Polym. Test. 68 (2018) 415-423.
DOI URL |
[108] |
G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei, W.Y. Yeong, Mater. Des. 137 (2018) 79-89.
DOI URL |
[109] | M. Iragi, C. Pascual-González, A. Esnaola, C.S. Lopes, L. Aretxabaleta, Addit. Manuf. 30 (2019) 100884. |
[110] |
M. Ueda, S. Kishimoto, M. Yamawaki, R. Matsuzaki, A. Todoroki, Y. Hirano, A.L. Duigou, Compos. Pt. A-Appl. Sci. Manuf. 137 (2020) 105985.
DOI URL |
[111] | M. Iragi, C. Pascual-Gonzalez, A. Esnaola, J. Aurrekoetxea, C.S. Lope, L. Aretxa- baleta, in:Proceedings of the 18th European Conference on Composite Mate- rials, Athens, Greece, 2018 June 24-28. |
[112] | Z. Lash, J. Servey, F. Gardone, C. Nikhare, S.H.R. Sanei, in:Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, U. S., 2019 Nov 8-14. |
[113] | T. Vaneker, Proc. CIRP 60 (2017) 181-186. |
[114] | Markforged,Celebrating the Last Five Years, https://markforged.com/resources/blog/celebrating-five-years (accessed8March 2021). |
[115] | R. Omuro, M. Ueda, R. Matsuzaki, A. Todoroki, Y. Hirano, in: Proceedings of the 21st International Conference on Composite Material, Xi’an, China, 2017 May 15-17. |
[116] |
M. Rismalia, S.C. Hidajat, I.G.R. Permana, B. Hadisujoto, M. Muslimin, F. Tri- awan, J. Phys. Conf. Ser. 1402 (2019) 044041.
DOI URL |
[117] |
F. Fernandez, W.S. Compel, J.P. Lewicki, D.A. Tortorelli, Comput. Methods Appl. Mech. Eng. 353 (2019) 277-307.
DOI URL |
[118] |
K. Dong, L. Liu, X. Huang, X. Xiao, Compos. Struct. 250 (2020) 112610.
DOI URL |
[119] |
L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, S. Yang, Mater. Des. 162 (2019) 394-404.
DOI URL |
[120] |
G.D. Goh, W. Toh, Y.L. Yap, T.Y. Ng, W.Y. Yeong, Compos. Pt. B-Eng. 216 (2021) 108840.
DOI URL |
[121] | H. Mei, Z. Ali, I. Ali, L. Cheng, Adv. Compos. Mater. 2 (2019) 312-319. |
[122] | H. Brooks, D. Tyas, S. Molony, Int. J. Rapid Manuf. 6 (2017) 97-113. |
[123] |
B. Huang, S. Singamneni, J. Compos. Mater. 49 (2015) 363-383.
DOI URL |
[124] |
A. Todoroki, T. Oasada, Y. Mizutani, Y. Suzuki, M. Ueda, R. Matsuzaki, Y. Hi- rano, Adv. Compos. Mater. 29 (2020) 147-162.
DOI |
[125] |
J. Zhang, Z. Zhou, F. Zhang, Y. Tan, Y. Tu, B. Yang, Materials 13 (2020) 471.
DOI URL |
[126] | Y. Lu, P. Gin Kit, G. Andrew, L. Zhao, X. Han, in: Proceedings of the 16th Con- ference on Rapid Design, Prototyping & Manufacturing, Uxbridge, U.K., 2019 April 4-5. |
[127] |
D.E. Karalekas, Mater. Des. 24 (2003) 665-670.
DOI URL |
[128] | F. Saffar, C. Sonnenfeld, P. Beauchene, C.H.Park,Front.Mater. 7(2020)1-12. |
[129] |
J.P. Davim, P. Reis, Mater. Des. 24 (2003) 315-324.
DOI URL |
[130] |
B. Chang, X. Li, P. Parandoush, S. Ruan, C. Shen, D. Lin, Polym. Test. 88 (2020) 106563.
DOI URL |
[131] |
B. Chang, P. Parandoush, X. Li, S. Ruan, C. Shen, R.A. Behnagh, Y. Liu, D. Lin, Polym. Compos. 41 (2020) 4706-4715.
DOI URL |
[132] | S. Sommacal, A. Matschinski, K. Drechsler, P. Compston, Composites 149 (2021) 106487. |
[133] |
D. Klosterman, R. Chartoff, G. Graves, N. Osborne, B. Priore, Compos. Pt. A-Appl. Sci. Manuf. 29 (1998) 1165-1174.
DOI URL |
[134] |
P. Parandoush, C. Zhou, D. Lin, Adv. Eng. Mater. 21 (2019) 1800622.
DOI URL |
[135] |
F. Ahmed, S.C. Joshi, Y.C. Lam, J. Thermoplast. Compos. Mater. 17 (2004) 447-462.
DOI URL |
[136] |
P. Bettini, G. Alitta, G. Sala, L. Landro, J. Mater. Eng. Perform. 26 (2017) 843-848.
DOI URL |
[137] | L.G. Blok, M.L. Longana, H. Yu, B.K.S. Woods, Addit. Manuf. 22 (2018) 176-186. |
[138] |
E.C. Botelho, Ł. Figiel, M.C. Rezende, B. Lauke, Compos. Sci. Technol. 63 (2003) 1843-1855.
DOI URL |
[139] |
N.G. Karsli, A. Aytac, Compos. Pt. B-Eng. 51 (2013) 270-275.
DOI URL |
[140] |
Z. Sun, J. Xiao, L. Tao, Y. Wei, S. Wang, H. Zhang, S. Zhu, M. Yu, Materials 12 (2018) 13.
DOI URL |
[141] |
S.Y. Park, C.H. Choi, W.J. Choi, S.S. Hwang, Appl. Compos. Mater. 26 (2019) 187-204.
DOI URL |
[142] |
G.D. Goh, S. Agarwala, G.L. Goh, V. Dikshit, S.L. Sing, W.Y. Yeong, Aerosp. Sci. Technol. 63 (2017) 140-151.
DOI URL |
[143] | S.K. Moon, Y.E. Tan, J. Hwang, Y.-J. Yoon, Int. J. Precis Eng Manuf-Green Tech- nol. 1 (2015) 223-228. |
[144] | F. Froes, R. Boyer, Additive Manufacturing for the Aerospace Industry, Elsevier, Cambridge, 2019. |
[145] | C. Jones, E.H. Robertson, M. Koelbl, C. Singer, Space Propulsion, Roma, Italy, 2016 May 2-6. |
[146] | D. Sam, Dunlop Systems Integrates Markforged 3D Print- ing for Internal and Customer Tooling, 2021 https://www.tctmagazine.com/additive-manufacturing-3d-printing-news/dunlop-systems-markforged-3d-printing-tooling/ (accessed 8 October 2021). |
[147] | A.A. Hassen, R. Springfield, J. Lindahl, B. Post, L. Love, C. Duty, U. Vaidya, R. Pipes, V. Kunc, in:Proceedings of the Composites and Advanced Materi- als Expo, Anaheim, U. S., 2016 September 26-29. |
[148] | Cincinnati,Boeing 777x Trim Tool, https://www.e-ci.com/boeing-777x-trim-tool (accessed9May2021). |
[149] | T. Wohlers, I. Campbell, O. Diegel, J. Kowen, N. Mostow, Wohlers Report 2021-3D Printing and Additive Manufacturing, OakRidge, U.S., 2021. |
[150] | Discover How the Oldest Racing Team in Australia Reached New Levels of Speed Through Their use of 3D Printing, 2021 https://www.solidprint3d.co.uk/success-story-garry-rogers-motorsport/ (accessed10August2021). |
[151] | CFAM Prime-Dedicated Production System with Thermoplastic Composite Materials, 2021 https://cead-am.com/ (accessed 27 Februrary 2021). |
[152] | Haddington Dynamics, Haddington Dynamics latest and greatest 7+ axis robotic arm, https://www.hdrobotic.com/dexter. . (accessed 8 October 2021). |
[153] | Peels J., AREVO Partners With Franco Bicycles to Make 3D Printed Carbon Fiber Frames, https://3dprint.com/240923/arevo-partners-with-franco-bicycles-to-make-3d-printed-carbon-fiber-frames/. (accessed 8 October 2021). |
[154] | Thermwood,Large Scale Additive Manufacturing, https://www.thermwood.com/lsam_home.htm (accessed10August 2021). |
[155] | Schwaar C., Markforged X7 Case Study: 3D Printing Stronger Material, https://all3dp.com/4/markforged-x7-case-study-3d-printing-stronger-material/ (ac- cessed 26 Feburary 2021). |
[156] |
A. Azarov, F. Antonov, M. Golubev, A. Khaziev, S. Ushanov, Compos. Pt. B-Eng. 169 (2019) 157-163.
DOI URL |
[157] | Markforged,JJ Churchill: CMM Inspection Fixture, https://markforged.com/ resources/application-spotlights/cmm-fixture (accessed 8 October 2021). |
[158] | Markforged,Digital Forge for electronics manufacturing, https://markforged.com/industries/electronics (accessed 8 October 2021). |
[159] |
Y. Kim, O.O. Park, Macromol. Res. 28 (2020) 433-444.
DOI URL |
[160] | K.P.M. Lee, M. Brandt, R. Shanks, F. Daver, Polymers 12 (2020) 2014. |
[161] |
Z. Jiang, B. Diggle, M.L. Tan, J. Viktorova, C.W. Bennett, L.A. Connal, Adv. Sci. 7 (2020) 2001379.
DOI URL |
[162] | V. Mirón, S. Ferrándiz, D. Juárez, A. Mengual, Proc. Manuf. 13 (2017) 888-894. |
[163] |
B. Shaqour, M. Abuabiah, S. Abdel-Fattah, A. Juaidi, R. Abdallah, W. Abuzaina, M. Qarout, B. Verleije, P. Cos, Int. J. Adv. Manuf. Technol. 114 (2021) 1279-1291.
DOI URL |
[164] |
S.A. Ntim, O. Sae-Khow, C. Desai, F.A. Witzmann, S. Mitra, J. Environ. Monit. 14 (2012) 2772-2779.
DOI URL |
[165] | S.W. Tam, R. W, S. Rashidi, A. Luqman Chuah, M. Khalid, Int. J. Eng. Sci. Tech- nol. 11 (2016) 1-15. |
[166] | P. Olesik, M. Godzierz, M. Kozioł, Materials 12 (2019) 162520. |
[167] |
O.S. Carneiro, A.F. Silva, R. Gomes, Mater. Des. 83 (2015) 768-776.
DOI URL |
[168] | M. Spoerk, J. Sapkota, G. Weingrill, T. Fischinger, F. Arbeiter, C. Holzer, Macro- mol. Mater. Eng. 302 (2017) 1700143. |
[169] |
S. Zhang, M. Li, N. Hao, A.J. Ragauskas, ACS Omega 4 (2019) 20197-20204.
DOI URL |
[170] |
M.D. Alim, K.K. Childress, N.J. Baugh, A.M. Martinez, A. Davenport, B.D. Fair- banks, M.K. McBride, B.T. Worrell, J.W. Stansbury, R.R. McLeod, C.N. Bowman, Mater. Horiz. 7 (2020) 835-842.
DOI URL |
[171] | J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, Rapid Pro- totyp. J. 11 (2005) 26-36. |
[172] |
M. Vaezi, S. Yang, Virtual Phys. Prototyp. 10 (2015) 123-135.
DOI URL |
[173] |
Y. Tlegenov, W.F. Lu, G.S. Hong, Prog. Addit. Manuf. 4 (2019) 211-223.
DOI URL |
[174] |
I. Pires, B. Gouveia, J. Rodrigues, R. Fonte, Rapid Prototyp. J. 20 (2014) 413-421.
DOI URL |
[175] | H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, X. Zhu, Bioact. Mater. 5 (2020) 110-115. |
[176] | Q. Cheng, Z. Zhang, G. Zhang, P. Gu, L. Cai, Proc. Inst. Mech. Eng. Pt. C 229 (2014) 1134-1149. |
[177] | M. Hallmann, S. Goetz, B. Schleich, S. Wartzack, Proc. CIRP 84 (2019) 271-276. |
[178] |
M. Šljivic, A. Pavlovic, M. Kraišnik, J. Ili ´c, IOP Conf. Ser. 659 (2019) 012082.
DOI URL |
[179] |
D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, Polym. Test. 69 (2018) 157-166.
DOI URL |
[180] | T. Kozior, C. Kundera, Proc. Eng. 192 (2017) 463-468. |
[181] |
C. Oztan, R. Karkkainen, M. Fittipaldi, G. Nygren, L. Roberson, M. Lane, E. Ce- lik, J. Compos. Mater. 53 (2019) 271-280.
DOI URL |
[182] |
R.H. Hambali, K.M. Cheong, N. Azizan, IOP Conf. Ser. 210 (2017) 012063.
DOI URL |
[183] |
N. Jayanth, P. Senthil, C. Prakash, Virtual Phys. Prototyp. 13 (2018) 155-163.
DOI URL |
[184] |
L.M. Galantucci, F. Lavecchia, G. Percoco, CIRP Ann. 59 (2010) 247-250.
DOI URL |
[185] |
A. Garg, A. Bhattacharya, A. Batish, Int. J. Adv. Des. Manuf. Technol. 89 (2017) 2175-2191.
DOI URL |
[186] |
M. Mehdikhani, L. Gorbatikh, I. Verpoest, S.V. Lomov, J. Compos. Mater. 53 (2018) 1579-1669.
DOI URL |
[187] |
E.A. Papon, A. Haque, S.B. Mulani, Compos. Pt. B-Eng. 177 (2019) 107325.
DOI URL |
[188] |
K.R. Hart, R.M. Dunn, J.M. Sietins, C.M. Hofmeister Mock, M.E. Mackay, E.D. Wetzel, Polymer 144 (2018) 192-204.
DOI URL |
[189] |
S. Singh, M. Singh, C. Prakash, M.K. Gupta, M. Mia, R. Singh, Int. J. Adv. Manuf. Technol. 102 (2019) 1521-1536.
DOI URL |
[190] |
J.-H. Hong, T. Yu, Z. Chen, S.-J. Park, Y.-H. Kim, Mod. Phys. Lett. B 33 (2019) 1940025.
DOI URL |
[191] | S. Rangisetty, L.D. Peel, in: Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems Snowbird, U. S., 2017 Semtember 21-23. |
[192] |
V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D.J. Johnson, R.E. Neisiany, M.S. Hedenqvist, S. Ramakrishna, F. Berto, Int. J. Fatigue 143 (2021) 106007.
DOI URL |
[193] |
M.T.A. Ansari, K.K. Singh, M.S. Azam, J. Reinf. Plast. Compos. 37 (2018) 636-654.
DOI URL |
[194] |
M. Waseem, B. Salah, T. Habib, W. Saleem, M. Abas, R. Khan, U. Ghani, M. Ur, M. Siddiqi, Polymers 12 (2020) 2962.
DOI URL |
[195] |
M. Mohammadizadeh, A. Imeri, I. Fidan, M. Elkelany, Compos. Pt. B-Eng. 175 (2019) 107112.
DOI URL |
[196] |
H. Zhang, D. Yang, Y. Sheng, Compos. Pt. B-Eng. 151 (2018) 256-264.
DOI URL |
[197] |
H. Al Abadi, H.-T. Thai, V. Paton-Cole, V.I. Patel, Compos. Struct. 193 (2018) 8-18.
DOI URL |
[198] |
Z. Hou, X. Tian, Z. Zheng, J. Zhang, L. Zhe, D. Li, A.V. Malakhov, A.N. Polilov, Compos. Pt. B-Eng. 189 (2020) 107893.
DOI URL |
[199] |
J. Naranjo-Lozada, H. Ahuett-Garza, P. Orta-Castañón, W.M.H. Verbeeten, D. Sáiz-González, Addit. Manuf. 26 (2019) 227-241.
DOI |
[200] |
W. Zhang, C. Cotton, J. Sun, D. Heider, B. Gu, B. Sun, T.W. Chou, Compos. Pt. B-Eng. 137 (2018) 51-59.
DOI URL |
[201] |
S. Dul, L. Fambri, A. Pegoretti, Compos. Pt. A-Appl. Sci. Manuf. 85 (2016) 181-191.
DOI URL |
[202] |
W. Jing, C. Hui, W. Qiong, L. Hongbo, L. Zhanjun, Mater. Des. 116 (2017) 253-260.
DOI URL |
[203] |
Q. He, H. Wang, K. Fu, L. Ye, Compos. Sci. Technol. 191 (2020) 108077.
DOI URL |
[1] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[2] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[3] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
[4] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[5] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[6] | Vioni Dwi Sartika, Won Seok Choi, Gwanghyo Choi, Jaewook Han, Sung-Jin Chang, Won-Seok Ko, Blazej Grabowski, Pyuck-Pa Choi. Joining dissimilar metal of Ti and CoCrMo using directed energy deposition [J]. J. Mater. Sci. Technol., 2022, 111(0): 99-110. |
[7] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[8] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
[9] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[10] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[11] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[12] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[13] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[14] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[15] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||