J. Mater. Sci. Technol. ›› 2022, Vol. 111: 99-110.DOI: 10.1016/j.jmst.2021.09.038
• Research Article • Previous Articles Next Articles
Vioni Dwi Sartikaa,1, Won Seok Choia,1, Gwanghyo Choia, Jaewook Hana,b, Sung-Jin Changc, Won-Seok Kod, Blazej Grabowskie, Pyuck-Pa Choia,*(
)
Received:2021-05-21
Revised:2021-09-15
Accepted:2021-09-15
Published:2022-06-10
Online:2021-11-26
Contact:
Pyuck-Pa Choi
About author:* Korea Advanced Institute of Science and Technology, Republic of Korea. E-mail address: p.choi@kaist.ac.kr (P.-P. Choi).1These authors contributed equally to this work.
Vioni Dwi Sartika, Won Seok Choi, Gwanghyo Choi, Jaewook Han, Sung-Jin Chang, Won-Seok Ko, Blazej Grabowski, Pyuck-Pa Choi. Joining dissimilar metal of Ti and CoCrMo using directed energy deposition[J]. J. Mater. Sci. Technol., 2022, 111: 99-110.
| Alloy | Chemical composition, at.% | Empty Cell | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Ti | Co | Cr | Mo | Mn | Si | Fe | C | N | O | |
| CP-Ti | Bal. | 0.3 | 0.3 | |||||||
| CCM | Bal. | 31.13 | 3.42 | 0.77 | 1.44 | 0.11 | 0.12 | 0.73 | ||
Table 1. Chemical compositions of CP-Ti and CCM powders.
| Alloy | Chemical composition, at.% | Empty Cell | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Ti | Co | Cr | Mo | Mn | Si | Fe | C | N | O | |
| CP-Ti | Bal. | 0.3 | 0.3 | |||||||
| CCM | Bal. | 31.13 | 3.42 | 0.77 | 1.44 | 0.11 | 0.12 | 0.73 | ||
Fig. 1. (a) SEM images of CP-Ti and CCM powder, (b) schematic figure of joining Ti on CCM using directed energy deposition, and the cross-sectional area of the clad bead for defining (c) geometrical dilution [33] and (d) chemical dilution [34].
| Powder feed rate (g/min) | Laser power (W) | ||
|---|---|---|---|
| 150 | 225 | 300 | |
| 0.5 | A | B | C |
| 1 | D | E | F |
| 2 | G | H | I |
| 3 | J | K | L |
Table 2. Sample denotation and process parameters for DED.
| Powder feed rate (g/min) | Laser power (W) | ||
|---|---|---|---|
| 150 | 225 | 300 | |
| 0.5 | A | B | C |
| 1 | D | E | F |
| 2 | G | H | I |
| 3 | J | K | L |
Fig. 2. SEM-BSE images of joined Ti-CCM for each specimen (a) A, (b) B, (c) C, (d) D, (e) E, (f) F, (g) G, (h) H, (i) I, (j) J, (k) K, (l) L. The red arrows demonstrate the location and direction of EDS line scan in Fig. 2(b), (e), (h), and (k). Variations of Co-concentration in the cladding layer are indicated by different straight lines.
Fig. 3. Chemical concentration of clad layer to CCM substrate in specimen (a) B, (b) E, (c) H, (d) K. The chemical content shows evolution of Co-rich zone into pure Ti layer corresponds to the powder feed rate.
Fig. 4. EBSD images are taken on several specimens with 225 W laser power, (a) IPF map (b) phase maps, (c) magnified image of phase map specimen B; (d) IPF map, (e) phase map, (f) magnified image of phase map specimen E; (g) IPF map, (h) phase map, and (i) magnified image of phase map specimen H; (j) IPF and (k) phase map of specimen K, and (l) magnified image of phase map specimen K.
Fig. 6. Elastic modulus and hardness values of individual phases in the specimen K acquired from nanoindentation measurement. Reference elastic modulus of α-Ti [66], CoTi [49], h-Co2Ti [67], c-Co2Ti [68], CCM [69]; hardness of Ti [70], CCM [71].
Fig. 7. Coefficient of thermal expansion (CTE) expected by the (a) quasiharmonic approximation (QHA) and (b) Debye-Grüneisen model, in comparison with previous experimental data [72].
Fig. 8. (a) Schematic illustration of the cooling stages from high temperature which leads to residual stress. (b) The calculated residual stress of adjoining phases. The gray bars represent the residual stress of adjoining phases, which were actually detected by EBSD, while the black bars indicate other possible combinations.
| Phase | CTE (K-1) | Thermal strain | E (GPa) | YS (MPa) |
|---|---|---|---|---|
| α-Ti | 11.6 × 10-6 | 8.1 × 10-3 | 128.7 | 500 [78] |
| CoTi | 12.0 × 10-6 | 8.4 × 10-3 | 142.8 | 100 T [79]-62 C [79] |
| h-Co2Ti | 16.4 × 10-6 | 11.5 × 10-3 | 258.3 | - |
| c-Co2Ti | 17.3 × 10-6 | 12.1 × 10-3 | 258.3 | - |
| CCM | 17.1 × 10-6 | 12.0 × 10-3 | 235.9 | 800 [80] |
Table 3. Data for residual stress calculation.
| Phase | CTE (K-1) | Thermal strain | E (GPa) | YS (MPa) |
|---|---|---|---|---|
| α-Ti | 11.6 × 10-6 | 8.1 × 10-3 | 128.7 | 500 [78] |
| CoTi | 12.0 × 10-6 | 8.4 × 10-3 | 142.8 | 100 T [79]-62 C [79] |
| h-Co2Ti | 16.4 × 10-6 | 11.5 × 10-3 | 258.3 | - |
| c-Co2Ti | 17.3 × 10-6 | 12.1 × 10-3 | 258.3 | - |
| CCM | 17.1 × 10-6 | 12.0 × 10-3 | 235.9 | 800 [80] |
Fig. 9. Relationship between processing parameters with (a) thickness of cladding layers, (b) coefficient of variation on thickness, (c) classification of clad Ti based on dilution rate, (d) estimated Co2Ti fraction in cladding layers.
| [1] | I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloy. (2017) 1-29. |
| [2] |
C.L. Li, L.N. Zou, Y.Y. Fu, W.J. Ye, S.X. Hui, Mater. Sci. Eng. A . 616 (2014) 207-213.
DOI URL |
| [3] | B. Su, L. Luo, B. Wang, Y. Su, L. Wang, R.O. Ritchie, E. Guo, T. Li, H. Yang, H. Huang, J. Guo, H. Fu, J. Mater. Sci.Technol. 62 (2021) 234-248. |
| [4] |
J. Shi, J. Yang, Z. Li, L. Zhu, L. Li, X. Wang, J. Alloys Compd. 728 (2017) 1043-1048.
DOI URL |
| [5] |
H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, M.S. Dargusch, J. Alloys Compd. 827 (2020) 154263.
DOI URL |
| [6] |
J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, JOM 67 (2015) 1281-1303.
DOI URL |
| [7] | R. Li, C. Feng, L. Jiang, Y. Cao, Mater. Sci. Forum 944 MSF (2018) 903-909. |
| [8] | A. Rodriguez-Contreras, M. Punset, J.A. Calero, F.J. Gil, E. Ruperez, J.M. Manero, J. Mater. Sci.Technol. 76 (2021) 129-149. |
| [9] |
G. Lan, M. Li, Y. Tan, L. Li, X. Yang, L. Ma, Q. Yin, H. Xia, Y. Zhang, G. Tan, C. Ning, J. Mater. Sci.Technol. 31 (2015) 182-190.
DOI URL |
| [10] | A. Ataee, Y. Li, C. Wen, Acta Biomater. 97 (2019) 587-596. |
| [11] | B. Lohberger, N. Stuendl, D. Glaenzer, B. Rinner, N. Donohue, H.C. Lichtenegger, L. Ploszczanski, A. Leithner, Sci. Rep. 10 (2020) 1-8. |
| [12] |
D.C. Romonţi, J. Iskra, M. Bele, I. Demetrescu, I. Milošev, J. Alloys Compd. 665 (2016) 355-364.
DOI URL |
| [13] |
C. Liu, Z. Zhou, K.Y. Li, Electrochim. Acta 241 (2017) 331-340.
DOI URL |
| [14] | N. Espallargas, C. Torres, A.I. Muñoz, Wear 332-333 (2015) 669-678. |
| [15] |
N. Logan, A. Sherif, A.J. Cross, S.N. Collins, A. Traynor, L. Bozec, I.P. Parkin, P. Brett, J. Biomed. Mater. Res. - Part A 103 (2015) 1208-1217.
DOI URL |
| [16] |
Q. Zhang, K. Li, J. Yan, Z. Wang, Q. Wu, L. Bi, M. Yang, Y. Han, Biochem. Biophys. Res. Commun. 497 (2018) 1011-1017.
DOI URL |
| [17] | K. Zhou, J. Chen, T. Wang, Y. Su, L. Qiao, Y. Yan,Appl. Surf. Sci. 520 (2020) 146354. |
| [18] |
D. Cetiner, A.H. Paksoy, O. Tazegul, M. Baydogan, H. Guleryuz, H. Cimenoglu, E. Atar, J. Therm. Spray Technol. 27 (2018) 1414-1427.
DOI URL |
| [19] |
L. Reclaru, P.Y. Eschler, R. Lerf, A. Blatter, Biomaterials 26 (2005) 4747-4756.
PMID |
| [20] | G.D. Janaki, B.E. Stucker, J. Manuf. Sci. Eng..Trans. ASME 130 (2008) 0245031-0245035. |
| [21] |
M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, JOM 68 (2016) 747-764.
DOI URL |
| [22] |
B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hof- mann, Z.K. Liu, A.M. Beese, Acta Mater 108 (2016) 46-54.
DOI URL |
| [23] | C. Tan, Y. Chew, G. Bi, D. Wang, W. Ma, Y. Yang, K. Zhou, J. Mater. Sci.Technol. 72 (2021) 217-222. |
| [24] | F. Wang, J. Mei, X. Wu, Appl. Surf. Sci. 253 (2006) 1424-1430. |
| [25] |
J.C. Heigel, M.F. Gouge, P. Michaleris, T.A. Palmer, J. Mater. Process. Technol. 231 (2016) 357-365.
DOI URL |
| [26] |
J. Li, X. Luo, G.J. Li, Wear 310 (2014) 72-82.
DOI URL |
| [27] |
R. Lupoi, M. Sparkes, A. Cockburn, W. O’Neill, Mater. Lett. 65 (2011) 3205-3207.
DOI URL |
| [28] | M. Alizadeh-Sh, S.P.H. Marashi, E. Ranjbarnodeh, R. Shoja-Razavi, J. Manuf. Pro- cess. 56 (2020) 54-62. |
| [29] |
M. Ma, W. Xiong, Y. Lian, D. Han, C. Zhao, J. Zhang, Surf. Coatings Technol. 381 (2020) 125129.
DOI URL |
| [30] | Y. Sun, M. Hao, Opt.Lasers Eng. 50 (2012) 985-995. |
| [31] |
D.M. Goodarzi, J. Pekkarinen, A. Salminen, J. Laser Appl. 27 (2015) S29201.
DOI URL |
| [32] |
X. Wu, B. Zhu, X. Zeng, X. Hu, K. Cui, Surf. Coatings Technol. 79 (1996) 200-204.
DOI URL |
| [33] | E. Toyserkani, A. Khajepour, S. Corbin, Laser Cladding, CRC Press, 2017. |
| [34] |
S. Zanzarin, S. Bengtsson, A. Molinari, Powder Metall. 59 (2016) 85-94.
DOI URL |
| [35] | G. Choi, W.S. Choi, J. Han, P.P. Choi, Addit. Manuf. 36 (2020) 101467. |
| [36] |
G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251-14269.
DOI PMID |
| [37] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
| [38] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
| [39] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
| [40] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
| [41] |
S. Wei, M.Y. Chou, Phys. Rev. Lett. 69 (1992) 2799-2802.
PMID |
| [42] | A. Togo, I. Tanaka, Phys. Rev. B - Condens. Matter Mater. Phys. 87 (2013) 1-6. |
| [43] | A. Togo, F. Oba, I. Tanaka, Phys. Rev. B - Condens. Matter Mater. Phys. 78 (2008) 1-9. |
| [44] |
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater 100 (2015) 90-97.
DOI URL |
| [45] | A. Van De Walle, P. Tiwary, M. De Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, Calphad Comput. Coupling Phase Diagrams Ther- mochem. 42 (2013) 13-18. |
| [46] |
A. van de Walle, G. Ceder, J. Phase Equilibria 23 (2002) 348-359.
DOI URL |
| [47] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
DOI URL |
| [48] | J. Gong, A. Wilkinson, Philos. Mag. Lett. 90 (2010) 503-512. |
| [49] |
H. Yasuda, T. Takasugi, M. Koiwa, Mater. Trans. JIM 32 (1991) 48-51.
DOI URL |
| [50] | M.-. A. Xue, X. Yuan, C. Zhong, P. Wan, Appl. Sci. 10 ( 2020) 2097. |
| [51] |
S. Mischler, A.I. Muñoz, Wear 297 (2013) 1081-1094.
DOI URL |
| [52] |
F. Stein, M. Merali, P. Watermeyer, Calphad 67 (2019) 101681.
DOI URL |
| [53] |
J.L. Murray, Bull. Alloy Phase Diagrams 3 (1982) 74-85.
DOI URL |
| [54] | H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, M.S. Dargusch, Mater. Sci. Eng. A 705 (2017) 385-393. |
| [55] |
H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sci. Eng. A 593 (2014) 170-177.
DOI URL |
| [56] |
J. Song, Y. Chew, G. Bi, X. Yao, B. Zhang, J. Bai, S.K. Moon, Mater. Des. 137 (2018) 286-297.
DOI URL |
| [57] |
J.L. Murray, Bull. Alloy Phase Diagrams 2 (1981) 174-181.
DOI URL |
| [58] |
J.L. Murray, Bull. Alloy Phase Diagrams 2 (1981) 185-192.
DOI URL |
| [59] |
K.P. Gupta, J. Phase Equilibria 22 (2001) 52-60.
DOI URL |
| [60] | C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, IOP Conf. Ser. Mater. Sci. Eng. (2015) 89. |
| [61] |
A. Kundu, D.P. Field, Mater. Sci. Eng. A 667 (2016) 435-443.
DOI URL |
| [62] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
| [63] | Y. Bai, H. Jiang, K. Yan, M. Li, Y. Wei, K. Zhang, B. Wei ,J. Mater. Sci. Technol. 92 (2021) 129-137. |
| [64] | K.S. Kim, Y.K. Kim, H.J. Kim, J.H. Kim, K.A. Lee ,J. Mater. Res. Technol. 10 (2021) 205-215. |
| [65] |
B. Bhattacharyya, S. Gangopadhyay, B.R. Sarkar, J. Mater, Process. Technol. 189 (2007) 169-177.
DOI URL |
| [66] |
H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, J. Eckert, Mater. Sci. Eng. A 625 (2015) 350-356.
DOI URL |
| [67] |
D. Naujoks, Y.M. Eggeler, P. Hallensleben, J. Frenzel, S.G. Fries, M. Palumbo, J. Koβmann, T. Hammerschmidt, J. Pfetzing-Micklich, G. Eggeler, E. Spiecker, R. Drautz, A. Ludwig, Acta Mater. 138 (2017) 100-110.
DOI URL |
| [68] | Z.S. Nong, J.C. Zhu, H.L. Yu, Z.H. Lai, Trans. Nonferrous Met. Soc. China (English Ed.) 22 (2012) 1437-1444. |
| [69] |
L. Marc, H.J. Rack, Biomaterials 19 (1997) 1621-1639.
DOI URL |
| [70] |
D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater 60 (2012) 3849-3860.
DOI URL |
| [71] | J.M. Johnston, M. Jubinsky, S.A. Catledge, Appl. Surf. Sci. 328 (2015) 133-139. |
| [72] | Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desal, Thermophys. Prop. Matter-the TPRC Data Ser. (1975). |
| [73] | B. Grabowski, L. Ismer, T. Hickel, J. Neugebauer,Phys. Rev. B - Condens. Matter Mater. Phys. 79 (2009) 1-16. |
| [74] |
P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B. Rogge, J.M. Ed-wards, R.J. Sebring, Mater. Sci. Eng. A 399 (2005) 72-83.
DOI URL |
| [75] |
K. Qi, Y. Yang, G. Hu, X. Lu, J. Li, Surf. Coatings Technol. 397 (2020) 125983.
DOI URL |
| [76] |
N. Tamanna, R. Crouch, I.R. Kabir, S. Naher, Appl. Phys. A Mater. Sci. Process. 124 (2018) 1-5.
DOI URL |
| [77] | M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, C. Badini, Eng.Fail. Anal. 13 (2006) 409-426. |
| [78] | E. Pehlivan, M. Roudnicka, J. Dzugan, M. Koukolikova, V. Králík, M. Seifi, J.J. Lewandowski, D. Dalibor, M. Daniel, Addit. Manuf. 35 (2020). |
| [79] |
J.A. Wollmershauser, C.J. Neil, S.R. Agnew, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010) 1217-1229.
DOI URL |
| [80] |
C. Sawangrat, O. Yamaguchi, S.K. Vajpai, K. Ameyama, Mater. Trans. 55 (2014) 99-105.
DOI URL |
| [81] |
Y. Fang, X. Jiang, T. Song, D. Mo, Z. Luo, Mater. Lett. 253 (2019) 59-62.
DOI URL |
| [82] |
J. Ahn, E. He, L. Chen, R.C. Wimpory, J.P. Dear, C.M. Davies, Mater. Des. 115 (2017) 441-457.
DOI URL |
| [83] | O.N. Senkov, B.C. Chakoumakos, J.J. Jonas, F.H. Froes, Mater. Res. Bull. 36 (2001) 1431-1440. |
| [84] | R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys (1994). |
| [85] | M. Raghavachari, Applied Multivariate Statistics in Geohydrology and Related Sciences (2001). |
| [86] | X. Guan, Y.F. Zhao, Addit. Manuf. 34 (2020) 101226. |
| [87] |
B. Vamsi Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Acta Biomater. 4 (2008) 697-706.
PMID |
| [88] | I. Miyamoto, S. Fujimori, K. Itakura, Laser Inst. Am. Proc. 83 (1997). |
| [1] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
| [2] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
| [3] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
| [4] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
| [5] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
| [6] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
| [7] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
| [8] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
| [9] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
| [10] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
| [11] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
| [12] | Luxin Liang, Qianli Huang, Hong Wu, Hao He, Guanghua Lei, Dapeng Zhao, Kun Zhou. Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential [J]. J. Mater. Sci. Technol., 2022, 96(0): 167-178. |
| [13] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
| [14] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
| [15] | Qian Wang, Shun Xu, Yajun Zhao, Jean-Sébastien Lecomte, Christophe Schuman. Multi-dimensional morphology of hydride diffusion layer and associated sequential twinning in commercial pure titanium [J]. J. Mater. Sci. Technol., 2022, 103(0): 105-112. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
