J. Mater. Sci. Technol. ›› 2022, Vol. 111: 76-87.DOI: 10.1016/j.jmst.2021.09.030
• Research Article • Previous Articles Next Articles
Duoduo Wanga,b, Qunbo Fana,b,*(
), Xingwang Chenga, Yu Zhoub, Ran Shic, Yan Qiana, Le Wanga,b, Xinjie Zhua, Haichao Gonga, Kai Chena, Jingjiu Yuana, Liu Yangd
Received:2021-03-03
Revised:2021-08-19
Accepted:2021-09-13
Published:2021-11-17
Online:2021-11-17
Contact:
Qunbo Fan
About author:* National Key Laboratory of Science and Technology on Materials Under Shock and Impact, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China. E-mail address: fanqunbo@bit.edu.cn (Q. Fan).Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model[J]. J. Mater. Sci. Technol., 2022, 111: 76-87.
Fig. 1. Fitted constitution relations: (a) schematic of the HEXRD, (b) applied macroscopic stress-strain curve obtained by HEXRD and constitutive relations of the α and β phases fitted by EPSC, and responses of lattice strains to the applied stress for ($10 \bar{1} 0$) and ($10 \bar{1} 1$) reflections (c), ($10 \bar{1} 2$) and ($11 \bar{2} 0$) reflections (d), (200), (211), and (310) reflections (e).
| Cij (GPa) | C11 | C12 | C13 | C33 | C44 |
|---|---|---|---|---|---|
| α phase | 160 | 86 | 55 | 183 | 54 |
| β phase | 130.2 | 70.6 | 45.8 |
Table 1. Fitted single-crystal non-zero independent elastic constants Cij of the α and β phases.
| Cij (GPa) | C11 | C12 | C13 | C33 | C44 |
|---|---|---|---|---|---|
| α phase | 160 | 86 | 55 | 183 | 54 |
| β phase | 130.2 | 70.6 | 45.8 |
| Empty Cell | Slip systems | CRSS (GPa) | τ1 (GPa) | θ0 (GPa) | θ1 (GPa) |
|---|---|---|---|---|---|
| α phase | < | 0.36 | 0.13 | 0.115 | 0.0021 |
| < | 0.38 | ||||
| < | 0.50 | ||||
| < | 0.52 | ||||
| β phase | <111> {110} | 0.45 | 0.13 | 0.105 | 0.0016 |
| <111> {112} | 0.46 | ||||
| <111> {123} | 0.47 |
Table 2. CRSSs and Vocé hardening parameters of each slip system used in the EPSC framework.
| Empty Cell | Slip systems | CRSS (GPa) | τ1 (GPa) | θ0 (GPa) | θ1 (GPa) |
|---|---|---|---|---|---|
| α phase | < | 0.36 | 0.13 | 0.115 | 0.0021 |
| < | 0.38 | ||||
| < | 0.50 | ||||
| < | 0.52 | ||||
| β phase | <111> {110} | 0.45 | 0.13 | 0.105 | 0.0016 |
| <111> {112} | 0.46 | ||||
| <111> {123} | 0.47 |
| Empty Cell | ρ (g/cm3) | ν | E (GPa) | σy (MPa) | G (GPa) |
|---|---|---|---|---|---|
| α phase | 4.4 | 0.32 | 134.1 | 990 | 0.06 |
| β phase | 5.2 | 0.318 | 91.3 | 1020 | 0.68 |
Table 3. Material parameters of the isotropic elastic-plastic constitutive model.
| Empty Cell | ρ (g/cm3) | ν | E (GPa) | σy (MPa) | G (GPa) |
|---|---|---|---|---|---|
| α phase | 4.4 | 0.32 | 134.1 | 990 | 0.06 |
| β phase | 5.2 | 0.318 | 91.3 | 1020 | 0.68 |
Fig. 3. Initial microstructural characteristics via EBSD: crystalline orientation maps of the α phase (a) and β phase (b), histograms of grain size distribution as inset respectively, and texture pole figures for: (c) {0001}, {$10\bar{1}0$}, and {$\bar{1}2\bar{1}0$} α phase, (d) {001}, {011}, and {111} β phase (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 4. The first principal stress vectors of the ROI and the corresponding schematics at different times (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 5. 3D morphologies, effective stress contours, and effective strain contours at different times: (a) t/4, (b) t/2, (c) 3t/4, and (d) t (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 6. Rolled texture pole figures by CPFEM: (a) {0001}, {$102\bar{1}0$}, and {$\bar{1}2\bar{1}0$} for the α phase, (b) {001}, {011}, and {111} for the β phase (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 7. Cold-rolled microstructural characteristics via EBSD: crystalline orientation maps of the α phase (a) and β phase (c), histogram of grain size distribution as inset respectively, and texture pole figures for: (b) {0001}, {$10\bar{1}0$}, and {$\bar{1}2\bar{1}0$} α phase, (d) {001}, {011}, and {111} β phase (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 9. The relative activity of representative texture components in each slip system for the α phase and the statistics of the Schmid factors at t/4: the relative activities for <$\bar{1}2\bar{1}0$>{0001} system (a), <$\bar{1}2\bar{1}0$>{$10\bar{1}0$} system (b), <$\bar{1}2\bar{1}0$>{$10\bar{1}1$} system (c), <$\bar{1}2\bar{1}3$>{$10\bar{1}1$} system (d), and histogram of the Schmid factors (e) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 10. Relative activity of representative texture components in each slip system for the α phase and the statistics of the Schmid factors at t/2: the relative activities for <$\bar{1}2\bar{1}0$>{0001} system (a), <$\bar{1}2\bar{1}0$>{$10\bar{1}0$} system (b), <$\bar{1}2\bar{1}0$>{$10\bar{1}1$} system (c), <$\bar{1}2\bar{1}3$>{$10\bar{1}1$} system (d), and histogram of the Schmid factors (e).
Fig. 11. Relative activity of representative texture components in each slip system for the α phase and the statistics of the Schmid factors at 3t/4: the relative activities for <$\bar{1}2\bar{1}0$>{0001} system (a), <$\bar{1}2\bar{1}0$>{$10\bar{1}0$} system (b), <$\bar{1}2\bar{1}0$>{$10\bar{1}1$} system (c), <$\bar{1}2\bar{1}3$>{$10\bar{1}1$} system (d), and histogram of the Schmid factors (e) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 12. Relative activity of representative texture components in each slip system for the β phase and the statistics of the Schmid factors at different times: (a) t/4, (b) 3t/4, and (c) t.
Fig. 13. Interaction of three typical grains at different times: effective stress contours (a) and slip system activations for (270,53,45)α (b), (317,74,45)β (c), and (54,52,80)β (d) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
| [1] |
G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang, Mater. Des. 46 (2013) 668-674.
DOI URL |
| [2] |
H.L. Yu, M. Yan, J.T. Li, A. Godbole, C. Lu, K. Tieu, H.J. Li, C. Kong, Mater. Sci. Eng. A 710 (2018) 10-16.
DOI URL |
| [3] | F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, E.F. Rauch, M. Veron, P. Vermaut, P.J. Jacques, F. Prima, Scr.Mater. 94 (2015) 17-20. |
| [4] |
L.Q. Wang, W.J. Lu, J.N. Qin, F. Zhang, D. Zhang, Mater. Sci. Eng. A 491 (2008) 372-377.
DOI URL |
| [5] |
V.D. Cojocaru, D. Raducanu, T. Gloriant, D.M. Gordin, I. Cinca, Mater. Sci. Eng. A 586 (2013) 1-10.
DOI URL |
| [6] |
S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, S.P. Malysheva, G.A. Salishchev, S.L. Semiatin, Mater. Sci. Eng. A 528 (2011) 3474-3479.
DOI URL |
| [7] |
S.F. Zhang, W.D. Zeng, Q.Y. Zhao, L.L. Ge, M. Zhang, Mater. Sci. Eng. A 708 (2017) 574-581.
DOI URL |
| [8] |
I.G. Dastidar, V. Khademi, T.R. Bieler, A.L. Pilchak, M.A. Crimp, C.J. Boehlert, Mater. Sci. Eng. A 636 (2015) 289-300.
DOI URL |
| [9] |
S. Hémery, P. Villechaise, Acta Mater. 171 (2019) 261-274.
DOI URL |
| [10] | W.G. Zhu, C.S. Tan, R.Y. Xiao, Q.Y. Sun, J. Sun, J. Mater. Sci.Technol. 57 (2020) 188-196. |
| [11] | J. Zhao, L.X. Lv, K.H. Wang, G. Liu, J. Mater. Sci.Technol. 38 (2020) 125-134. |
| [12] |
A. Prakash, W.G. Nöhring, R.A. Lebensohn, H.W. Höppel, E. Bitzek, Mater. Sci. Eng. A 631 (2015) 104-119.
DOI URL |
| [13] |
S.H. Choi, D.W. Kim, B.S. Seong, A.D. Rollett, Int. J. Plast. 27 (2011) 1702-1720.
DOI URL |
| [14] |
H.W. Li, X.X. Sun, H. Yang, Int. J. Plast. 87 (2016) 154-180.
DOI URL |
| [15] |
L. Delannay, P.J. Jacques, S.R. Kalidindi, Int. J. Plast. 22 (2006) 1879-1898.
DOI URL |
| [16] |
C.U. Jeong, Y.U. Heo, J.Y. Choi, W. Woo, S.H. Choi, Int. J. Plast. 75 (2015) 22-38.
DOI URL |
| [17] |
S.H. Choi, E.Y. Kim, S.I. Kim, Int. J. Plast. 58 (2014) 184-200.
DOI URL |
| [18] |
Y.R. Wu, Y. Shen, K.G. Chen, Y.Y. Yu, G. He, P.D. Wu ,J. Alloy. Compd. 711 (2017) 495-505.
DOI URL |
| [19] |
W. Muhammad, A.P. Brahme, U. Ali, J. Hirsch, O. Engler, H. Aretz, J. Kang, R.K. Mishra, K. Inal, Mater. Sci. Eng. A 754 (2019) 161-177.
DOI URL |
| [20] | S.D. Chen, X.H. Liu, L.Z. Liu, Int. J. Mech. Sci. 100 (2015) 226-236. |
| [21] |
W.C. Liu, B.K. Chen, Y. Pang, Eur. J. Mech. A Solids 75 (2019) 41-55.
DOI URL |
| [22] |
C. Yu, O.L. Kafka, W.K. Liu, Methods Appl. Mech. Eng. 349 (2019) 339-359.
DOI URL |
| [23] | D.J. Rowenhorst, A. Gupta, C.R. Feng, G. Spanos, Scr.Mater. 55 (2006) 11-16. |
| [24] |
A. Loeb, M. Ferry, L. Bassman, Ultramicroscopy 161 (2016) 83-89.
DOI URL |
| [25] | D.C. Pagan, J.V. Bernier, D. Dale, J.Y. PeterKo, T.J. Turner, B. Blank, P.A. Shade, Scr.Mater. 142 (2018) 96-100. |
| [26] |
D.C. Pagan, P.A. Shade, N.R. Barton, J.S. Park, P. Kenesei, D.B. Menasche, J.V. Bernier, Acta Mater. 128 (2017) 406-417.
DOI URL |
| [27] |
D.D. Wang, Q.B. Fan, R. Shi, Y. Zhou, H.C. Gong, L. Wang, Y.F. Xue, Y. Ren, Mater. Sci. Eng. A 779 (2020) 139154.
DOI URL |
| [28] |
U.B. Asim, M. Amir Siddiq, M.E. Kartal, Int. J. Plast. 122 (2019) 188-211.
DOI URL |
| [29] |
J.H. Kim, D. Kim, F. Barlat, M.G. Lee, Mater. Sci. Eng. A 539 (2012) 259-270.
DOI URL |
| [30] |
S.L. Raghunathan, A.M. Stapleton, R.J. Dashwood, M. Jackson, D. Dye, Acta Mater. 55 (2007) 6861-6872.
DOI URL |
| [31] |
R. Shi, G.J. Li, Z.H. Nie, Q.B. Fan, Mater. Sci. Eng. A 675 (2016) 138-146.
DOI URL |
| [32] |
S. Hémery, P. Villechaise, Acta Mater. 141 (2017) 285-293.
DOI URL |
| [33] |
T.R. Bieler, S.L. Semiatin, Int. J. Plast. 18 (2002) 1165-1189.
DOI URL |
| [34] |
G. Franz, F. Abed-Meraim, J.P. Lorrain, T.B. Zineb, X. Lemoine, M. Berveiller, Int. J. Plast. 25 (2009) 205-238.
DOI URL |
| [35] |
X.G. Fan, X.Q. Jiang, X. Zeng, Y.G. Shi, P.F. Gao, M. Zhan, Int. J. Plast. 104 (2018) 173-195.
DOI URL |
| [36] |
R. Ma, A.L. Pilchak, S.L. Semiatin, T.J. Truster, Int. J. Plast. 107 (2018) 189-206.
DOI URL |
| [37] |
F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 56 (2008) 3951-3962.
DOI URL |
| [38] |
B. Chen, J.S. Xiang, J. Latham, R.R. Bakker, Int. J. Rock Mech. Min. Sci. 132 (2020) 104348.
DOI URL |
| [39] |
F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 53 (2005) 555-567.
DOI URL |
| [40] |
C. Lavogiez, S. Hémery, P. Villechaise, Int. J. Fatigue 131 (2020) 105341.
DOI URL |
| [41] |
F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Int. J. Plast. 25 (2009) 1066-1082.
DOI URL |
| [1] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
| [2] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
| [3] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
| [4] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
| [5] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
| [6] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
| [7] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
| [8] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
| [9] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [10] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
| [11] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
| [12] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
| [13] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
| [14] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
| [15] | Fengying Zhang, Panpan Gao, Hua Tan, Yao Li, Yongnan Chen, Min Mei, Adam T. Clare, Lai-Chang Zhang. Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 88(0): 132-142. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
