J. Mater. Sci. Technol. ›› 2022, Vol. 109: 1-11.DOI: 10.1016/j.jmst.2021.08.066
• Research Article • Next Articles
Juan Lia,b, Yaqun Xua, Wenlong Xiaoa,*(), Chaoli Maa, Xu Huangb
Received:
2021-05-15
Revised:
2021-08-12
Accepted:
2021-08-24
Published:
2022-05-20
Online:
2021-11-02
Contact:
Wenlong Xiao
About author:
* E-mail address: wlxiao@buaa.edu.cn (W. Xiao).Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties[J]. J. Mater. Sci. Technol., 2022, 109: 1-11.
Fig. 2. SEM image of Ti-10Al-4Ta-2Nb (a) and Ti-10Al-4Ta-2Nb-0.25Re (b) after homogenization treatment, and magnified SEM image (c) of Ti-10Al-4Ta-2Nb-0.25Re alloy with corresponding EDS elemental mapping images of Al, Nb, Ta, Re and Ti elements.
Fig. 3. TEM images of as-homogenized alloys: (a) BF image, (b) SAED pattern taken from α matrix, and (c) DF image showing the presence of α2 precipitates in the α lamellas of Ti-10Al-4Ta-2Nb alloy; (d) BF image, (e) SAED pattern taken from α matrix, and (f) DF image showing the presence of α2 precipitates in the α lamellas of Ti-10Al-4Ta-2Nb-0.25Re alloy.
Fig. 4. Optical microstructure of (a) Ti-10Al-4Ta-2Nb and (b) Ti-10Al-4Ta-2Nb-0.25Re alloys, and SEM image of (c) Ti-10Al-4Ta-2Nb and (d) Ti-10Al-4Ta-2Nb-0.25Re after stabilizing treatment.
Fig. 7. TEM images of Ti-10Al-4Ta-2Nb alloy: (a) BF image and (b) SAED pattern taken from αs phase, respectively; (c) DF image showing the presence of α2 precipitates in the αs; (d) BF image and (e) SAED pattern taken from αp phase, respectively; (f) DF image showing the presence of α2 precipitates in the αp.
Fig. 8. TEM images of Ti-10Al-4Ta-2Nb-0.25Re alloy: (a) BF image and (b) SAED pattern taken from αs phase, respectively; (c) DF image showing the presence of α2 precipitates in the αs; (d) BF image and (e) SAED pattern taken from αp phase, respectively; (f) DF image showing the presence of α2 precipitates in the αp.
Fig. 9. BF images and DF TEM images showing the α2 precipitates after thermal exposure taken from (a, b) the αs and (c, d) the αp of Ti-10Al-4Ta-2Nb alloy, and (e, f) the αs and (g, h) the αp of Ti-10Al-4Ta-2Nb-0.25Re alloy.
Fig. 11. Tensile engineering stress-strain curves and corresponding mechanical properties of Ti-10Al-4Ta-2Nb and Ti-10Al-4Ta-2Nb-0.25Re alloy: (a) without thermal exposure; (b) after 650 °C/100 h thermal exposure.
Fig. 12. BSE image of Ti-10Al-4Ta-2Nb-0.25Re alloy and corresponding WDS elemental mapping images of Ti, Al, Nb, Ta and Re elements after thermal exposure.
Fig. 15. Fracture surfaces after tensile tests at different conditions: (a, b) Ti-10Al-4Ta-2Nb and (c, d) Ti-10Al-4Ta-2Nb-0.25Re alloy without thermal exposure; (e, f) Ti-10Al-4Ta-2Nb and (g, h)Ti-10Al-4Ta-2Nb-0.25Re alloy after 650 °C/100 h thermal exposure.
[1] | P. Blenkinsop, Proc. Fifth Int. Conf. Titan. (1984) 2323-2338. |
[2] |
G. Lütjering, Mater. Sci. Eng. A 243 (1-2) (1998) 32-45.
DOI URL |
[3] |
T. Moskalewicz, F. Smeacetto, A. Czyrska-Filemonowicz, Surf. Coat. Technol. 203 (16) (2009) 2249-2253.
DOI URL |
[4] |
P. Wanjara, M. Jahazi, H. Monajati, S. Yue, Mater. Sci. Eng. A 416 (2006) 300-311.
DOI URL |
[5] |
A. Madsen, H. Ghonem, Mater. Sci. Eng. A 177 (1-2) (1994) 63-73.
DOI URL |
[6] |
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Adv. Eng. Mater. 5 (6) (2003) 419-427.
DOI URL |
[7] |
A.K. Gogia, Def. Sci. J. 55 (2) (2005) 149-173.
DOI URL |
[8] |
M. Es-Souni, Metall. Mater. Trans. A 32 (2) (2001) 285-293.
DOI URL |
[9] |
K. Yue, J. Liu, H. Zhang, H. Yu, Y. Song, Q. Hu, Q. Wang, R. Yang, J. Mater. Sci. Technol. 36 (2020) 91-96.
DOI |
[10] | M. Blackburn, Trans. Metall. Soc. AIME 239 (1967) 1200-1208. |
[11] |
T. Namboodhiri, Mater. Sci. Eng. 57 (1) (1983) 21-22.
DOI URL |
[12] |
S. Hémery, P. Villechaise, Scr. Mater. 130 (2017) 157-160.
DOI URL |
[13] |
D. Ozturk, A. Pilchak, S. Ghosh, Scr. Mater. 127 (2017) 15-18.
DOI URL |
[14] |
C. Marker, S.L. Shang, J.C. Zhao, Z.K. Liu, Calphad 61 (2018) 72-84.
DOI URL |
[15] |
L. Na, W.H. Warnes, IEEE Trans. Appl. Supercond. 11 (2001) 3800-3803.
DOI URL |
[16] |
R. Evans, R. Hull, B. Wilshire, J. Mater. Process. Technol. 56 (1-4) (1996) 492-501.
DOI URL |
[17] |
P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.P. Immarigeon, Mater. Sci. Eng. A 396 (1-2) (2005) 50-60.
DOI URL |
[18] | J.M. Cai, C.X. Cao, J. Aerosp. Mater. 34 (4) (2014) 27-36. |
[19] | Q.J. Wang, J.R. Liu, R. Yang, J. Aerosp. Mater. 34 (4) (2014) 1-26. |
[20] |
A. Radecka, P. Bagot, T. Martin, J. Coakley, V. Vorontsov, M. Moody, H. Ishii, D. Rugg, D. Dye, Acta Mater. 112 (2016) 141-149.
DOI URL |
[21] | F. Schmidt, R. Wood, Heat treatment of titanium and titanium alloys, Battelle memorial Institute, Columbus, Ohio, 1966. |
[22] |
C. Dichtl, Z. Zhang, H. Gardner, P. Bagot, A. Radecka, D. Dye, M. Thomas, R. San-dala, J.Q. da Fonseca, M. Preuss, Mater. Charact. 164 (2020) 110327.
DOI URL |
[23] |
Y. Xu, Y. Fu, J. Li, W. Xiao, X. Zhao, C. Ma, J. Mater. Sci. Technol. 93 (2021) 147-156.
DOI URL |
[24] |
J. Zhang, L. Dong, Mater. Sci. Eng. A 341 (1) (2003) 229-235.
DOI URL |
[25] |
A. Radecka, J. Coakley, V. Vorontsov, T. Martin, P. Bagot, M. Moody, D. Rugg, D. Dye, Scr. Mater. 117 (2016) 81-85.
DOI URL |
[26] | A. Radecka, V. Vorontsov, J. Coakley, K. Rahman, P. Bagot, T. Martin, M. Moody, I. Jones, T. Lindley, D. Rugg, D. Dye, in: Proceedings of the 13th World Conference on Titanium, Hoboken, NJ, USA 2016, pp. 971-978. |
[27] |
J. Li, J. Cai, Y. Xu, W. Xiao, C. Ma, Mater. Sci. Eng. A 774 (2020) 138934.
DOI URL |
[28] | F. Dear, P. Kontis, B. Gault, J. Ilavsky, D. Dye, Acta Mater. (1) (2021) 116811. |
[29] | Q. Ding, Q. Yu, J. Li, Z. Zhang, Mater. Rev. 32 (1) (2018) 110-114. |
[30] |
C.L. Zacherl, S.L. Shang, A. Saengdeejing, Z.K. Liu, Calphad 38 (2012) 71-80.
DOI URL |
[31] |
X. Gao, W. Zeng, Y. Wang, L. Yu, Q. Wang, J. Alloy. Compd. 725 (2017) 536-543.
DOI URL |
[32] |
X. Gao, W. Zeng, S. Zhang, Q. Wang, Acta Mater. 122 (2017) 298-309.
DOI URL |
[33] |
A.J. Huang, G.P. Li, Y.L. Hao, R. Yang, Acta Mater. 51 (2003) 4939-4952.
DOI URL |
[34] |
P. Narayana, S.W. Kim, J.K. Hong, N. Reddy, J.T. Yeom, Mater. Sci. Eng. A 718 (2018) 287-291.
DOI URL |
[35] |
B. Callegari, J. Marçola, K. Aristizabal, F. Soldera, MATEC Web Conf. 321 (2020) 12014.
DOI URL |
[36] | J.L. Murray, ASM Int. (1987) 340-345. |
[37] |
W. Jia, W. Zeng, H. Yu, Mater. Des. 58 (6) (2014) 108-115.
DOI URL |
[38] |
A.K. Singh, T. Roy, C. Ramachandra, Metall. Mater. Trans. A 27 (5) (1996) 1167-1173.
DOI URL |
[39] | J. Zhang, N. Peng, X. Wang, L. Li, Q. Wang, J. Mater. Sci. Technol. 23 (1) (2007) 102-106. |
[40] |
A. Madsen, H. Ghonem, J. Mater. Eng. Perform. 4 (3) (1995) 301-307.
DOI URL |
[41] |
Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Scr. Mater. 172 (2019) 77-82.
DOI URL |
[42] |
Y. Zhou, K. Wang, Z. Yan, R. Xin, S. Wei, X. Wang, Q. Liu, Mater. Charact. 167 (2020) 110521.
DOI URL |
[43] |
S. Feng, J. Li, H. Kou, B. Tang, J. Cai, Mater. Sci. Eng. A 626 (2015) 247-253.
DOI URL |
[44] |
D. Lunt, T. Busolo, X. Xu, D. Quinta, M. Preuss, Acta Mater. 129 (2017) 72-82.
DOI URL |
[45] |
P. Castany, F. Pettinari-Sturmel, J. Douin, A. Coujou, Mater. Sci. Eng. A 680 (2017) 85-91.
DOI URL |
[1] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[2] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[3] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[4] | Jiaying Jin, Yongming Tao, Xinhua Wang, Zeyu Qian, Wang Chen, Chen Wu, Mi Yan. Concurrent improvements of corrosion resistance and coercivity in Nd-Ce-Fe-B sintered magnets through engineering the intergranular phase [J]. J. Mater. Sci. Technol., 2022, 110(0): 239-245. |
[5] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[6] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[7] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[8] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[9] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[10] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[11] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[12] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[13] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[14] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[15] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||