J. Mater. Sci. Technol. ›› 2022, Vol. 105: 131-141.DOI: 10.1016/j.jmst.2021.08.006
• Research Article • Previous Articles Next Articles
Ahmad Zafaria,*(), Edward Wen Chiek Luia,b, Mogeng Lia,c, Kenong Xiaa,*(
)
Received:
2021-05-20
Revised:
2021-07-26
Accepted:
2021-08-01
Published:
2021-09-20
Online:
2021-09-20
Contact:
Ahmad Zafari,Kenong Xia
About author:
k.xia@unimelb.edu.au (K. Xia).Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure[J]. J. Mater. Sci. Technol., 2022, 105: 131-141.
Fig. 1. Schematics of (a) LPBF-0° where the tensile and build directions are parallel, (b) LPBF-90° where the build direction is perpendicular to the tensile direction, and (c) stripe scanning strategy with the stripe size of 5 mm (the arrows are laser tracks).
Stripe size (mm) | Layer thickness (µm) | Point distance (µm) | Exposure time (µs) | Power (W) | Hatch spacing (mm) | Laser spot size (µm) | Rotation angle between layers (°) |
---|---|---|---|---|---|---|---|
5 | 30 | 55 | 70 | 200 | 0.105 | 66 | 67 |
Table 1. Main printing parameters used.
Stripe size (mm) | Layer thickness (µm) | Point distance (µm) | Exposure time (µs) | Power (W) | Hatch spacing (mm) | Laser spot size (µm) | Rotation angle between layers (°) |
---|---|---|---|---|---|---|---|
5 | 30 | 55 | 70 | 200 | 0.105 | 66 | 67 |
Fig. 2. (a) IPF-Y map, with Y being the build direction, (b) band contrast (BC) map, and (c) grain misorientation angle distributions in LPBF-0°, showing mostly heavily textured long columnar β grains with occasional short ones (inset in (b)) and predominantly low angle grain boundaries (LAGBs) other than a small number of high angle grain boundaries (HAGBs) mainly at 30° and 60°. (d) IPF-Y, (e) BC map, and (f) grain misorientation angle distributions in LPBF-0°+HT, showing equiaxed β grains with weakened texture and an increased number of HAGBs, in particular at 45°.
Fig. 3. EBSD in LPBF-90°, showing (a) IPF-X, (b) IPF-Y (Y is the build direction), (c) IPF-Z maps, (d) band contrast, and (e) pole figures (scale is in terms of MUD: multiplies of uniform distribution). The results indicate a strong texture along <100> (the build direction).
Fig. 4. (a) SEM in LPBF-0°, showing prior β GBs, a layer boundary (LB), melt pool boundaries (MPBs) and internal cells, and (b) a higher magnification of internal cells in LPBF-0°. (c) Optical microscopy in LPBF-0°, showing MPBs and boundaries between deposited layers (LBs) across the sample (selectively delineated by dotted-lines). (d) and (e) Optical microscopy and SEM in the heat-treated sample, showing the disappearance of MPBs, LBs and internal cells.
Fig. 5. (a) Tensile engineering stress-strain curves for LPBF-0°, LPBF-90° and LPBF-0°+HT and inset showing yielding drop, and (b) variation of the minimum cross section area (A) along the gauge length normalised by the initial area (Ao) with testing time, with the comparative baselines for uniform deformation (dotted lines) and the starting points for necking (solid circles). (c) Tensile trues stress-strain curves before the start of necking with LPBF-90° and LPBF-0°+HT showing moderate work hardening during uniform deformation. (d) Work hardening rate (dσ/dϵ) as a function of true strain (ϵ) before necking.
Alloy | Upper YS (MPa) | Lower YS (MPa) | εt (%) | E (GPa)* | Reference |
---|---|---|---|---|---|
LPBF-0° Ti-5553 | 846 | 820 | ∼17 | ∼55 | This work |
LPBF-90° Ti-5553 | 855 | 840 | ∼20 | ∼55 | This work |
LPBF-0°+HT Ti-5553 | 780 | 780 | ∼24 | ∼55 | This work |
Ti-5553 | ∼800 | ∼795 | ∼13 | 77 | [ |
Ti-5Al-5Mo-5V-1Cr-1Fe** | ∼977 | - | ∼10 | - | [ |
Ti-7.5Mo | ∼650 | - | < 10 | ∼62 | [ |
Ti-15Mo | ∼1050-1180 | ∼1040-1160 | 2.5-18 | 102.5 | [ |
Ti-50Ta | ∼883 | - | ∼12 | ∼30 | [ |
Ti-15Ta-(1.5-15.5)Zr | ∼663-869 | - | 15-25 | 43-92 | [ |
Ti-25Nb-3Zr-3Mo-2Sn | ∼592 | - | 37 | - | [ |
Table 2. Engineering upper and lower yield strength (YS), total elongation (εt) and elastic modulus (E) for LPBF-0°, LPBF-90° and LPBF-0°+HT Ti-5553 in the present work in comparison with other as-AM β Ti alloys.
Alloy | Upper YS (MPa) | Lower YS (MPa) | εt (%) | E (GPa)* | Reference |
---|---|---|---|---|---|
LPBF-0° Ti-5553 | 846 | 820 | ∼17 | ∼55 | This work |
LPBF-90° Ti-5553 | 855 | 840 | ∼20 | ∼55 | This work |
LPBF-0°+HT Ti-5553 | 780 | 780 | ∼24 | ∼55 | This work |
Ti-5553 | ∼800 | ∼795 | ∼13 | 77 | [ |
Ti-5Al-5Mo-5V-1Cr-1Fe** | ∼977 | - | ∼10 | - | [ |
Ti-7.5Mo | ∼650 | - | < 10 | ∼62 | [ |
Ti-15Mo | ∼1050-1180 | ∼1040-1160 | 2.5-18 | 102.5 | [ |
Ti-50Ta | ∼883 | - | ∼12 | ∼30 | [ |
Ti-15Ta-(1.5-15.5)Zr | ∼663-869 | - | 15-25 | 43-92 | [ |
Ti-25Nb-3Zr-3Mo-2Sn | ∼592 | - | 37 | - | [ |
Fig. 6. (a-g) SEM and EBSD in LPBF-0° after tensile testing: (a) slip bands at 45° to the tensile direction in regions away from the necking zone, (b) slip bands at smaller angles to the tensile direction near the necking zone, (c) slip bands at ~90° to the tensile direction, (d) EBSD showing unit cells with <100> axes parallel to the tensile direction, (e) dimples (selectively arrowed) formed in slip bands (selectively delineated by dotted-lines), (f) a crack created by dimple coalescence, and (g) steps formed on the fracture surface.
Fig. 7. TEM from a sample cut along <100> in LPBF-0° deformed until fracture, showing (a) slip bands on {110} at ~45° to the build/<100> direction and kinks at slip band junctions (selectively delineated by dashed lines), (b) dislocation entanglement in the junctions (right, closeup of the framed area), (c) steps created at a β GB (dashed line) by intersecting slip bands (dotted lines), (d, e) a dimple observed at two different angles and magnifications.
Fig. 8. SEM in (a, b) LPBF-0°+HT and (c-e) LPBF-90° after tensile deformation: (a, b) dimples (selectively arrowed) in slip bands, (b) kinks formed at slip band junctions, (c) dimples in slip bands (arrowed), (d) slip bands at 40°-45° to the tensile direction, (e) internal cells of < 1 µm thick sliced by slip bands (left) and closeup from the framed area, revealing distorted cells (one is delineated between dashed lines) by slip planes (dotted lines).
Fig. 9. EBSD band contrast images (first column) and pole figures for slip planes of {110}, {112} and {123} with calculated Schmidt factors (second column) obtained from single grains in (a, b) LPBF-0°, (c, d) LPBF-0°+HT and (e, f) LPBF-90°.
Fig. 10. Schematics of slip band/slip band and slip band/GB interactions in (a) LPBF-0°, (b) LPBF-90°, and (c) LPBF-0°+HT, showing two types of slip systems operative in LPBF-90° and LPBF-0°+HT, as well as different ways of deformation transfer in the three specimens through slip band/GB interactions.
Fig. 11. Schematics of (a) equiaxed β grains in LPBF-0°+HT, (b) β columns in LPBF-0° with a slip plane (blue dashed line), (c) internal cells of < 1 µm in thickness inside the columns, and (d) slip channelling originated from dislocations cutting through the cells.
[1] |
A. Zafari, E.W. Lui, K. Xia, Mater. Res. Lett. 8 (2020) 117-122.
DOI URL |
[2] | S. Kou, Welding Metallurgy, John Whiley & Sons, Hoboken, New Jersey, USA, 2003. |
[3] |
H. Schwab, F. Palm, U. Kühn, J. Eckert, Mater. Des. 105 (2016) 75-80.
DOI URL |
[4] |
A. Zafari, K.A. Xia, Mater. Res. Lett. 6 (2018) 627-633.
DOI URL |
[5] |
A. Zafari, M.R. Barati, K.A. Xia, Mater. Sci. Eng. A 744 (2019) 445-455.
DOI URL |
[6] |
M. Simonelli, Y.Y. Tse, C. Tuck, J. Mater. Res. 29 (2014) 2028-2035.
DOI URL |
[7] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater 85 (2015) 74-84.
DOI URL |
[8] |
W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater 125 (2017) 390-400.
DOI URL |
[9] | S. Banerjee, P. Mukhopadhyay, Mukhopadhyay,Phase Transformations: Examples from Tita- nium and Zirconium Alloys, Pergamon Materials Series, 12, Elsevier, London, 2010. |
[10] |
B. Carroll, T. Palmer, A.M. Beese, Acta Mater 87 (2015) 309-320.
DOI URL |
[11] |
F. Wang, S. Williams, P. Colegrove, A. Antonysamy, Metall. Mater. Trans. A 44 (2013) 968-977.
DOI URL |
[12] |
M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616 (2014) 1-11.
DOI URL |
[13] |
J. Yang, H. Yu, Z. Wang, X. Zeng, Mater. Charact. 127 (2017) 137-145.
DOI URL |
[14] | P. Kobryn, S. Semiatin, Semiatin, Mechanical properties of laser-deposited Ti-6Al-4V, in: Solid Free, Fabr. Proc. Austin(2001) 6-8. |
[15] |
T. Voisin, N.P. Calta, S.A. Khairallah, J.-B. Forien, L. Balogh, R.W. Cunningham, A.D. Rollett, Y.M. Wang, Mater. Des. 158 (2018) 113-126.
DOI URL |
[16] |
E. Brandl, D. Greitemeier, Mater. Lett. 81 (2012) 84-87.
DOI URL |
[17] |
P. Nandwana, Y. Lee, C. Ranger, A.D. Rollett, R.R. Dehoff, S.S. Babu, Metall. Mater. Trans. A 50 (2019) 3429-3439.
DOI URL |
[18] |
Z. Zou, M. Simonelli, J. Katrib, G. Dimitrakis, R. Hague, Scr. Mater. 180 (2020) 66-70.
DOI URL |
[19] |
J. Wang, X. Lin, J. Li, Y. Hu, Y. Zhou, C. Wang, Q. Li, W. Huang, Mater. Sci. Eng. A 754 (2019) 735-749.
DOI URL |
[20] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11 (2020) 142.
DOI PMID |
[21] |
P. Barriobero-Vila, J. Gussone, A. Stark, N. Schell, J. Haubrich, G. Requena, Nat. commun. 9 (2018) 1-9.
DOI URL |
[22] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[23] |
M. Niinomi, J. Mech. Behav. Biomed. Mater. 1 (2008) 30-42.
DOI PMID |
[24] | C. Oldani, A. Dominguez, in: S.K. Fokter (Ed.), Recent Advances in Arthroplasty, Tech, 2012, pp. 149-162. |
[25] | J. Qazi, H. Rack, B. Marquardt, JOM 56 (2004) 49-51. |
[26] |
X. Luo, C. Yang, Z.Q. Fu, L.H. Liu, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li, Mater. Sci. Eng. A 823 (2021) 141731.
DOI URL |
[27] |
Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan, B. Song, Y. Shi, Mater. Des. 126 (2017) 268-277.
DOI URL |
[28] |
L. Yan, Y. Yuan, L. Ouyang, H. Li, A. Mirzasadeghi, L. Li, J. Alloys Compd. 688 (2016) 156-162.
DOI URL |
[29] |
N. Kang, Y. Li, X. Lin, E. Feng, W. Huang, J. Alloys Compd. 771 (2019) 877-884.
DOI URL |
[30] |
S.L. Sing, W.Y. Yeong, F.E. Wiria, J. Alloys Compd. 660 (2016) 461-470.
DOI URL |
[31] |
S. Huang, R.L. Narayan, J.H.K. Tan, S.L. Sing, W.Y. Yeong, Acta Mater 204 (2021) 116522.
DOI URL |
[32] |
M. Pellizzari, A. Jam, M. Tschon, M. Fini, C. Lora, M. Benedetti, Materials 13 (2020) 2792.
DOI URL |
[33] |
P.C. Collins, R. Banerjee, H.L. Fraser, Scr. Mater. 48 (2003) 1445-1450.
DOI URL |
[34] |
C. Zopp, S. Blümer, F. Schubert, L. Kroll, Ain Shams Eng. J. 8 (2017) 475-479.
DOI URL |
[35] |
C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Mater. Sci. Eng. A 586 (2013) 323-329.
DOI URL |
[36] |
M. Fischer, P. Laheurte, P. Acquier, D. Joguet, L. Peltier, T. Petithory, K. Anselme, P.M. Mille, Mater. Sci. Eng. C 75 (2017) 341-348.
DOI URL |
[37] |
C. Schulze, M. Weinmann, C. Schweigel, O. Keßler, R. Bader, Materials 11 (2018) 124.
DOI URL |
[38] |
H. Xu, Z. Li, A. Dong, H. Xing, T. Zhang, D. Wang, G. Zhu, B. Sun, J. Alloys Compd. 885 (2021) 161186.
DOI URL |
[39] |
D. Banerjee, J. Williams, Acta Mater 61 (2013) 844-879.
DOI URL |
[40] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 66 (2012) 749-752.
DOI URL |
[41] |
C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, D. Embury, P. Jacques, F. Prima, Scr. Mater. 114 (2016) 60-64.
DOI URL |
[42] |
J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Acta Mater 152 (2018) 301-314.
DOI URL |
[43] |
S. Hanada, O. Izumi, Metall. Mater. Trans. A 18 (1987) 265-271.
DOI URL |
[44] |
T. Grosdidier, C. Roubaud, M.-J. Philippe, Y. Combres, Scr. Mater. 36 (1997) 21-28.
DOI URL |
[45] |
Y. Yang, S.Q. Wu, G.P. Li, Y.L. Li, Y.F. Lu, K. Yang, P. Ge, Acta Mater 58 (2010) 2778-2787.
DOI URL |
[46] |
W. Xu, K.B. Kim, J. Das, M. Calin, J. Eckert, Scr. Mater. 54 (2006) 1943-1948.
DOI URL |
[47] |
T. Grosdidier, M.J. Philippe, Mater. Sci. Eng. A 291 (2000) 218-223.
DOI URL |
[48] |
F. Sun, J. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, P. Castany, C. Curfs, P. Jacques, F. Prima, Acta Mater 61 (2013) 6406-6417.
DOI URL |
[49] |
R. Heidenreich, W. Shockley, J. Appl. Phys. 18 (1947) 1029-1031.
DOI URL |
[50] |
J. Kumar, V. Singh, P. Ghosal, V. Kumar, Mater. Sci. Eng. A 623 (2015) 49-58.
DOI URL |
[51] |
J. Fan, H. Kou, Y. Zhang, L. Germain, K. Hua, L. Tang, C. Esling, J. Li, J. Alloys Compd. 770 (2019) 183-193.
DOI URL |
[52] |
A. Gysler, G. Lütjering, V. Gerold, Acta Metall 22 (1974) 901-909.
DOI URL |
[53] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater 100 (2015) 290-300.
DOI URL |
[54] |
S.A. Mantri, D. Choudhuri, A. Behera, M. Hendrickson, T. Alam, R. Banerjee, Mater. Sci. Eng. A 767 (2019) 138397.
DOI URL |
[55] |
A. Zafari, K. Xia, Acta Mater 157 (2018) 174-185.
DOI URL |
[56] |
M.Y. Gutkin, T. Ishizaki, S. Kuramoto, I.A. Ovidko, N.V. Skiba, Int. J. Plast. 24 (2008) 1333-1359.
DOI URL |
[57] |
J.C. Fanning, J. Mater. Eng. Perform. 14 (2005) 788-791.
DOI URL |
[58] |
N. Jones, R. Dashwood, D. Dye, M. Jackson, Mater. Sci. Eng. A 490 (2008) 369-377.
DOI URL |
[59] |
M. Bermingham, S. McDonald, D. StJohn, M. Dargusch, J. Mater. Res. 24 (2009) 1529-1535.
DOI URL |
[60] |
A. Mitchell, A. Kawakami, S. Cockcroft, High Temp. Mater. Processes 25 (2006) 337-349.
DOI URL |
[61] |
A. Mitchell, Mater. Sci. Eng. A 243 (1998) 257-262.
DOI URL |
[62] |
M. Carrard, M. Gremaud, M. Zimmermann, W. Kurz, Acta Metall. Mater. 40 (1992) 983-996.
DOI URL |
[63] |
A. Zafari, E.W. Lui, J.B. Shinbao, M. Li, T.T. Molla, K. Xia, Mater. Sci. Eng. A 788 (2020) 139572.
DOI URL |
[64] |
B. He, J. Li, X. Cheng, H.-M. Wang, Mater. Sci. Eng. A 699 (2017) 229-238.
DOI URL |
[65] |
Y.J. Liu, Y.S. Zhang, L.C. Zhang, Materialia 6 (2019) 100299.
DOI URL |
[66] |
J.J. Bhattacharyya, S. Nair, D.C. Pagan, V. Tari, R.A. Lebensohn, A.D. Rollett, S.R. Agnew, Int. J. Plast. 139 (2021) 102947.
DOI URL |
[67] |
F. Mompiou, D. Tingaud, Y. Chang, B. Gault, G. Dirras, Acta Mater 161 (2018) 420-430.
DOI URL |
[68] |
P. Castany, M. Besse, T. Gloriant, Phys. Rev. B 84 (2011) 020201.
DOI URL |
[69] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen, J. Alloys Compd. 808 (2019) 151741.
DOI URL |
[70] |
A. Luft, Prog. Mater. Sci. 35 (1991) 97-204.
DOI URL |
[71] |
A.W. Thompson, M.I. Baskes, W.F. Flanagan, Acta Metall 21 (1973) 1017-1028.
DOI URL |
[72] |
A. Bhattacharjee, V. Varma, S. Kamat, A. Gogia, S. Bhargava, Metall. Mater. Trans. A 37 (2006) 1423-1433.
DOI URL |
[73] |
F. Geng, M. Niinomi, M. Nakai, Mater. Sci. Eng. A 528 (2011) 5435-5445.
DOI URL |
[1] | Lei Zhang, Feng Xu, Jian Zhang, Baoru Bian, Yong Hu, Fei Xue, Juan Du. Large-scale area of magnetically anisotropic nanoparticle monolayer films deposited by MAPLE [J]. J. Mater. Sci. Technol., 2022, 106(0): 28-32. |
[2] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[3] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[4] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[5] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[6] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[7] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[8] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[9] | D.L. Gong, H.L. Wang, E.G. Obbard, R. Yang, Y.L. Hao. Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 234-243. |
[10] | Bo Song, Zhiwen Du, Ning Guo, Qingshan Yang, Fang Wang, Shengfeng Guo, Renlong Xin. Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section [J]. J. Mater. Sci. Technol., 2021, 69(0): 20-31. |
[11] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[12] | Chuan Guo, Yang Zhou, Xinggang Li, Xiaogang Hu, Zhen Xu, Enjie Dong, Qiang Zhu, R. Mark Ward. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90(0): 45-57. |
[13] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. |
[14] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[15] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||