J. Mater. Sci. Technol. ›› 2022, Vol. 103: 67-72.DOI: 10.1016/j.jmst.2021.06.043
• Research Article • Previous Articles Next Articles
Zheng Caoa,b,1, Zhao Chenga,1, Wei Xuc, Lei Lua,*(
)
Received:2021-03-10
Revised:2021-06-26
Accepted:2021-06-27
Published:2022-03-20
Online:2021-08-27
Contact:
Lei Lu
About author:* E-mail address: llu@imr.ac.cn (L. Lu).Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys[J]. J. Mater. Sci. Technol., 2022, 103: 67-72.
Fig. 1. Low magnification SEM images of Cu/Cu4Zn (a) and Cu/Cu32Zn (c) with layer thickness of 19 μm. High magnified SEM images of Cu/Cu4Zn (b) and Cu/Cu32Zn (d) as indicated by white boxes in (a) and (b). RD, ND and TD are rolling, normal and transverse directions, respectively.
| Sample | Grain size (μm) | Yield strength (MPa) | Uniform elongation (%) | Ultimate strength (MPa) |
|---|---|---|---|---|
| Cu | 7 ± 0.2 | 119 ± 6 | 30 ± 0.6 | 243 ± 3 |
| Cu4Zn | 0.32 ± 0.01 | 352 ± 1 | 1.5 ± 0.2 | 360 ± 2 |
| Cu32Zn | 1.7 ± 0.1 | 341 ± 7 | 28.8 ± 1.5 | 448 ± 1 |
| Cu/Cu4Zn(19 μm) | 7.5 ± 0.2 (Cu)0.34 ± 0.01 (Cu4Zn) | 264 ± 6 | 13.7 ± 2.5 | 308 ± 2 |
| Cu/Cu32Zn(19 μm) | 4.7 ± 0.2 (Cu)1.2 ± 0.1 (Cu32Zn) | 225 ± 2 | 29.6 ± 0.7 | 345 ± 2 |
Table 1 The average grain size, yield strength, uniform elongation and ultimate strength of laminated Cu/Cu4Zn, Cu/Cu32Zn with layer thickness of 19 μm compared to their freestanding constituents Cu, Cu4Zn and Cu32Zn.
| Sample | Grain size (μm) | Yield strength (MPa) | Uniform elongation (%) | Ultimate strength (MPa) |
|---|---|---|---|---|
| Cu | 7 ± 0.2 | 119 ± 6 | 30 ± 0.6 | 243 ± 3 |
| Cu4Zn | 0.32 ± 0.01 | 352 ± 1 | 1.5 ± 0.2 | 360 ± 2 |
| Cu32Zn | 1.7 ± 0.1 | 341 ± 7 | 28.8 ± 1.5 | 448 ± 1 |
| Cu/Cu4Zn(19 μm) | 7.5 ± 0.2 (Cu)0.34 ± 0.01 (Cu4Zn) | 264 ± 6 | 13.7 ± 2.5 | 308 ± 2 |
| Cu/Cu32Zn(19 μm) | 4.7 ± 0.2 (Cu)1.2 ± 0.1 (Cu32Zn) | 225 ± 2 | 29.6 ± 0.7 | 345 ± 2 |
Fig. 2. Tensile engineering stress-strain curves of freestanding Cu, Cu4Zn, Cu32Zn samples (a), and laminated Cu/Cu4Zn, Cu/Cu32Zn with different layer thicknesses (b). The inset of (a) shows work-hardening rate vs. true strain of freestanding Cu, Cu4Zn, Cu32Zn. (c) The variation of yield strengths of two laminated metals with different layer thicknesses.
Fig. 3. Inverse pole figure mapping colored by transverse-direction (TD) of the Cu/Cu4Zn (a-c) and Cu/Cu32Zn (d-f) samples under different tensile strains of 0% (a, d), 1% (b, e) and 9% (c, f).
Fig. 4. GND density mapping from EBSD measurement of laminated Cu/Cu4Zn (a-c) and Cu/Cu32Zn (d-f) with layer thickness of 19 μm at ε = 0%, 1% and 9%, as indicated. Averaged GND density distributions in Cu layer at different strains of Cu/Cu4Zn (g) and Cu/Cu32Zn (h). TA, tensile axis.
Fig. 5. Distribution of strain along tensile axis, εxx, of Cu/Cu4Zn (a,b) and Cu/Cu32Zn (d,e) with layer thickness of 19 μm at ε = 1% and ε = 3% as indicated. The deformation morphologies on lateral surface of Cu/Cu4Zn (c) and Cu/Cu32Zn (f) deformed at ε= 9%. Shear bands and slip bands are indicated by blue and red arrows, respectively.
| [1] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
| [2] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53 (2005) 4 817-4 824.
DOI URL |
| [3] |
M. Göken, H.W. Höppel, Adv. Mater. 23 (2011) 2663-2668.
DOI URL |
| [4] |
J. Park, J.S. Kim, M. Kang, S.S. Sohn, W.T. Cho, H.S. Kim, S. Lee, Sci. Rep. 7 (2017) 40231.
DOI URL |
| [5] |
Y.C. Wang, X.M. Luo, L.J. Chen, H.W. Yang, B. Zhang, G.P. Zhang, J. Mater. Sci. Technol. 34 (2018) 2283-2289.
DOI |
| [6] |
Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, Y.T. Zhu, Scr. Mater. 174 (2020) 19-23.
DOI URL |
| [7] |
J. Wang, Q. Zhou, S. Shao, A. Misra, Mater. Res. Lett. 5 (2016) 1-19.
DOI URL |
| [8] |
Y. Wang, C. Huang, Y. Li, F. Guo, Q. He, M. Wang, X. Wu, R.O. Scattergood, Y. Zhu, Int. J. Plast. 124 (2020) 186-198.
DOI URL |
| [9] |
I.J. Beyerlein, N.A. Mara, J.S. Carpenter, T. Nizolek, W.M. Mook, T.A. Wynn, R.J. McCabe, J.R. Mayeur, K. Kang, S. Zheng, J. Wang, T.M. Pollock, J. Mater. Res. 28 (2013) 1799-1812.
DOI URL |
| [10] | M.F. Ashby, Philos. Mag. 21 (1970) 399-424. |
| [11] |
N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metall. Mater. 42 (1994) 475-487.
DOI URL |
| [12] |
H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47 (1999) 1239-1263.
DOI URL |
| [13] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater. 116 (2016) 43-52.
DOI URL |
| [14] |
N.A. Fleck, M.F. Ashby, J.W. Hutchinson, Scr. Mater. 48 (2003) 179-183.
DOI URL |
| [15] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018) 559. |
| [16] |
Y. Zhang, Z. Cheng, L. Lu, T. Zhu, J. Mech. Phys. Solids 140 (2020) 103946.
DOI URL |
| [17] |
M.Y. Seok, J.A. Lee, D.H. Lee, U. Ramamurty, S. Nambu, T. Koseki, J.I. Jang, Acta Mater. 121 (2016) 164-172.
DOI URL |
| [18] | H. Ding, X. Cui, N. Gao, Y. Sun, Y. Zhang, L. Huang, L. Geng, J. Mater. Sci. Tech-nol. 62 (2021) 221-233. |
| [19] |
S.D. Antolovich, R.W. Armstrong, Prog. Mater. Sci. 59 (2014) 1-160.
DOI URL |
| [20] |
E.W. Hart, Acta Metall. 15 (1967) 351-355.
DOI URL |
| [21] |
I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 4386-4390.
DOI PMID |
| [22] |
M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427-556.
DOI URL |
| [23] |
M. Huang, C. Xu, G. Fan, E. Maawad, W. Gan, L. Geng, F. Lin, G. Tang, H. Wu, Y. Du, D. Li, K. Miao, T. Zhang, X. Yang, Y. Xia, G. Cao, H. Kang, T. Wang, T. Xiao, H. Xie, Acta Mater. 153 (2018) 235-249.
DOI URL |
| [24] |
Y. Wang, C. Huang, Z. Li, X. Fang, M. Wang, Q. He, F. Guo, Y. Zhu, Extreme Mech. Lett. 37 (2020) 100686.
DOI URL |
| [25] |
H. Wu, M. Huang, Q. Li, J. Wu, J. Li, Z. Wang, G. Fan, Scr. Mater. 172 (2019) 165-170.
DOI URL |
| [26] |
J. He, Y. Ma, D. Yan, S. Jiao, F. Yuan, X. Wu, Mater. Sci. Eng. A 726 (2018) 288-297.
DOI URL |
| [27] |
Q. Pan, L. Lu, Scr. Mater. 187 (2020) 301-306.
DOI URL |
| [28] |
F. Yuan, D. Yan, J. Sun, L. Zhou, Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2018) 12-17.
DOI URL |
| [1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
| [2] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
| [3] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
| [4] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
| [5] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
| [6] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
| [7] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
| [8] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
| [9] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
| [10] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
| [11] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [12] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
| [13] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
| [14] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
| [15] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
