J. Mater. Sci. Technol. ›› 2022, Vol. 109: 12-19.DOI: 10.1016/j.jmst.2021.08.068
• Research Article • Previous Articles Next Articles
Chang Gaoa,1, Yu Zhaoa,c,1, Weili Lia,b,*(), Yulong Qiaoa, Zhao Wanga, Lu Jinga, Jie Shengc, Wei-Dong Feia,d,*(
)
Received:
2021-04-28
Revised:
2021-08-17
Accepted:
2021-08-30
Published:
2022-05-20
Online:
2021-10-31
Contact:
Weili Li,Wei-Dong Fei
About author:
wdfei@hit.edu.cn (W.-D. Fei).Chang Gao, Yu Zhao, Weili Li, Yulong Qiao, Zhao Wang, Lu Jing, Jie Sheng, Wei-Dong Fei. Large linear electrostrain of acceptor-donor Co-doped ZnO films[J]. J. Mater. Sci. Technol., 2022, 109: 12-19.
Fig. 1. Surface and cross-section micrographs of Zn1-2x(FexLix)O thin films. (a, b) x = 0; (c, d) x = 0.02; (e, f) x = 0.04; (g, h) x = 0.06; (i, j) x = 0.08.
Fig. 2. Characterizations of Zn1-2x(FexLix)O thin films. (a) XRD patterns of Zn1-2x(FexLix)O thin film, (b) the expanded view of the (002) diffraction peak in Zn1-2x(FexLix)O thin films, (c) XRD patterns of (Zn1-2x(FexLix)O ceramic powders, and enlarged images of (100) and (002) peaks; (d) lattice constants (a and c), c/a ratio and (e) I(002)/I(100) intensity ratio as a function of Fe3+-Li+ doping content, obtained from powder diffraction data; (f) schematic illustration of the preferential distribution of Fe3+-Li+ pairs in doped ZnO lattice.
Fig. 3. Lattice parameters in the crystalline structures of (a) co-doped ZnO and (b) pure ZnO. (c) Electron density different around Fe3+-Li+ ions and corresponding dipole moment.
Fig. 5. Piezoelectric performance of Zn1-2x(FexLix)O thin films. (a) Measured and linearly fitted experimental data for d33* of as-prepared Zn1-2x(FexLix)O thin films with various content. (b) PFM micrographs and voltage amplitudes of Zn0.88(Fe0.06Li0.06)O thin film stimulated at different applied voltages such as 1.5 V, 3.5 V and 4.5 V as a typical enumeration.(Rc=122.9/16) in the PFM mode. (c) Measured and linearly fitted experimental data for the d33* of Zn0.88(Fe0.06Li0.06)O thin film in the PFM mode. (d) Schematic diagram of piezoelectric enhancement mechanism.
Fig. 6. (a) Measured and linearly fitted experimental data for d33* of thermal electrically treated Zn1-2x(FexLix)O thin films with various content. The comparison between as-prepared and thermal electrically treated thin films (b) d33*; (c) electrostrain. (d) Oriented process of Fe3+-Li+ ionic pairs during the thermo-electrically treatment.
Fig. 7. Comparison diagram of the piezoelectric performance for the representative thin films materials including BNT-based, BiFeO3-based, ZnO-based, KNN-based, lead-based.
Fig. 8. (a) Schematic diagram of in-situ XRD measurement under excitation electric field for the Fe3+-Li+ co-doped ZnO thin film. (b) 2θ angle of (002) diffraction peak under different applied DC electric field for the Zn0.88(Fe0.06Li0.06)O thin film. (c) 2θ angle of (002) diffraction peak of Zn0.88(Fe0.06Li0.06)O thin film as a function of applied DC electric field.
[1] |
T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Sens. Actuator A Phys. 102 (2002) 106-113.
DOI URL |
[2] | J.-S. Shiau, S. Brahma, J.-L. Huang, C.-P. Liu, Appl. Mater. Today 20 (2020) 100705. |
[3] | R. Serhane, S. Abdelli-Messaci, S. Lafane, H. Khales, W. Aouimeur, A. Has-sein-Bey, T. Boutkedjirt, ACS Appl. Surf. Sci. 288 (2014) 572-578. |
[4] | N.F. Hsu, T.-K. Chung, M. Chang, H.-J. Chen, J. Mater. Sci. Technol. 29 (10) (2013) 893-897. |
[5] | Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, J. Appl. Phys. 103 (7) (2008). |
[6] | Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, Appl. Phys. Lett. 92 (1) (2008). |
[7] | J.T. Luo, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, physica status solidi (RRL) 4 (8-9) (2010) 209-211. |
[8] | J.T. Luo, Y.C. Yang, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, Phys. Rev. B. 82 (1) (2010). |
[9] | F. Pan, J. Luo, Y. Yang, X. Wang, F. Zeng, China Technol. Sci. 55 (2) (2011) 421-436. |
[10] | D. D’Agostino, C. Di Giorgio, A. Di Trolio, A. Guarino, A.M. Cucolo, A. Vecchione, F. Bobba, Aip Advances 7 (5) (2017). |
[11] | Q. Fan, D. Li, J. Li, C. Wang, J. Alloys Compd. 829 (2020). |
[12] | S.B.K. Dhanajay, Appl. Phys. Lett. 89 (8) (2006). |
[13] | Y.C. Yang, C.F. Zhong, X.H. Wang, B. He, S.Q. Wei, F. Zeng, F. Pan, J. Appl. Phys. 104 (6) (2008). |
[14] |
L. Li, Y. Zhang, R. Wang, J. Sun, Y. Si, H. Wang, C. Pan, Y. Dai, Nano Energy 65 (2019) 104046.
DOI URL |
[15] |
D. Damjanovic, Appl. Phys. Lett. 97 (2010) 062906.
DOI URL |
[16] |
R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84 (2000) 5423.
PMID |
[17] | A.K. Kalyani, H. Krishnan, A. Sen, A. Senyshyn, R. Ranjan, Phys. Rev. B 91 (2015). |
[18] |
J. Peng, W. Liu, J. Zeng, L. Zheng, G. Li, A. Rousseau, A. Gibaud, A. Kassiba, J. Mater. Sci. Technol. 48 (2020) 92-99.
DOI URL |
[19] |
S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rodel, Appl. Phys. Lett. 91 (2007) 112906-112906-3.
DOI URL |
[20] | D. Zhou, Y. Zhou, Y. Tian, Y. Tu, G. Zheng, H. Gu, Journal Of Materials Science & Technology 31 (12) (2015) 1181-1185. |
[21] |
W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, W.L. Li, J. Eur. Ceram. Soc. 39 (2019) 4046-4052.
DOI |
[22] |
Y. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85 (2004) 4121-4123.
DOI URL |
[23] | J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H. Ning, Y.B. Chen, M.-H. Lu, B. Yang, J. Chen, S.T. Zhang, X. Xing, J. Rödel, W. Cao, Y.F. Chen, Nat. Commun 6 (1) (2015). |
[24] |
K. Wang, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J. Del Ouml, Rgen Uuml, Adv. Funct. Mater. 23 (2013) 4079-4086.
DOI URL |
[25] |
B. Narayan, J.S. Malhotra, R. Pandey, K. Yaddanapudi, P. Nukala, B. Dkhil, A. Senyshyn, R. Ranjan, Nat Mater 17 (2018) 427-431.
DOI URL |
[26] |
M. Li, B. Wang, H.-J. Liu, Y.-L. Huang, J. Zhang, X. Ma, K. Liu, D. Yu, Y.-H. Chu, L.-Q. Chen, P. Gao, Acta Mater 171 (2019) 184-189.
DOI URL |
[27] |
X. Lu, Z. Chen, Y. Cao, Y. Tang, R. Xu, S. Saremi, Z. Zhang, L. You, Y. Dong, S. Das, H. Zhang, L. Zheng, H. Wu, W. Lv, G. Xie, X. Liu, J. Li, L. Chen, L.-Q. Chen, W. Cao, L.W. Martin, Nat. Commun. 10 (2019) 3957.
DOI URL |
[28] |
D. Shihua, S. Tianxiu, Y. Xiaojing, L. Xiaobing, L. Guobiao, Ceram. Int. 38 (sup-p-S1) (2012) S33S36.
DOI URL |
[29] |
M. Zhou, J. Zhang, L. Ji, Y. Wang, J. Wang, F. Yu, Ceram. Int. 40 (1) (2014) 853-857.
DOI URL |
[30] |
G.M. Osoro, D. Bregiroux, T. Mai Pham, F. Levassort, Mater. Lett. 166 (2016) 259-262.
DOI URL |
[31] |
K. Wang, J.F. Li, Adv. Funct. Mater. 20 (12) (2010) 1924-1929.
DOI URL |
[32] |
Y. Feng, J. Wu, Q. Chi, W. Li, Y. Yu, W. Fei, Chem. Rev. 120 (2020) 1710-1787.
DOI PMID |
[33] |
Y. Yu, L.-D. Wang, W.-L. Li, Y.-L. Qiao, Y. Zhao, Y. Feng, T.-D. Zhang, R.-X. Song, W.-D. Fei, Acta Mater 150 (2018) 173-181.
DOI URL |
[34] |
D. Xu, W.L. Li, L.D. Wang, W. Wang, W.P. Cao, W.D. Fei, Acta Mater 79 (2014) 84-92.
DOI URL |
[35] |
D. Xu, L. Wang, W. Li, W. Wang, Y. Hou, W. Cao, Y. Feng, W. Fei, Phys. Chem. Chem. Phys. 16 (2014) 13078-13085.
DOI URL |
[36] |
Y. Feng, W.L. Li, D. Xu, W.D. Fei, Ferroelectrics 489 (2015) 156-163.
DOI URL |
[37] |
Y. Feng, W.L. Li, D. Xu, Y.L. Qiao, Y. Yu, Y. Zhao, W.D. Fei, ACS Appl. Mater. Interfaces 8 (2016) 9231-9241.
DOI URL |
[38] | Y.F. Hou, W.L. Li, T.D. Zhang, W. Wang, W.P. Cao, X.L. Liu, W.D. Fei, Phys.chem.chem.phys 17 (2015) 11593-11597. |
[39] |
M.H. Zhao, Z.L. Wang, S.X. Mao, Nano Lett 4 (2004) 587-590.
DOI URL |
[40] |
E. DiMasi, M.C. Aronson, J.F. Mansfield, B. Foran, S. Lee, Phys Rev B Condens Matter 52 (1995) 14516-14525.
DOI URL |
[41] |
W.-Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H.-S. Sheu, T.-S. Chan, C.-Y. Chiang, W. Zhou, R.-S. Liu, Chem. Mater. 26 (6) (2014) 2075-2085.
DOI URL |
[42] |
A. Hauser, N. Amstutz, S. Delahaye, A. Sadki, S. Schenker, R. Sieber, M. Zerara, CHIMIA International Journal for Chemistry 56 (2002) 685-689.
DOI URL |
[43] |
W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat Mater 12 (2013) 821-826.
DOI URL |
[44] |
X.B. Ren, Nat. Mater. 3 (2004) 91-94.
DOI URL |
[45] | L.X. Zhang, X. Ren, Phys. Rev. B 71 (2005). |
[46] | H. Morko, M. Zgür, Wiley-VCH Verlag GmbH & Co. KGaA, 2009. |
[47] | J. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, Appl. Phys. Lett. 92 (2008) 385. |
[48] |
J.A. Christman, H. Maiwa, S.H. Kim, A.I. Kingon, R.J. Nemanich, Piezoelectric measurements with atomic force microscopy, in: R.E. Jones, R.W. Schwartz, S.R. Summerfelt, I.K. Yoo (Eds.), Ferroelectric Thin Films Vii, 1999, pp. 617-622. doi: 10.1557/PROC-541-617.
DOI |
[49] | Z. Chen, S. Prosandeev, Z.L. Luo, W. Ren, Y. Qi, C.W. Huang, L. You, C. Gao, I.A. Kornev, T. Wu, J. Wang, P. Yang, T. Sritharan, L. Bellaiche, L. Chen, Phys. Rev. B. (2011) 84. |
[50] |
P. Mandal, A. Manjon-Sanz, A.J. Corkett, T.P. Comyn, K. Dawson, T. Steven-son, J. Bennett, L.F. Henrichs, A.J. Bell, E. Nishibori, M. Takata, M. Zanella, M.R. Dolgos, U. Adem, X. Wan, M.J. Pitcher, S. Romani, T.T. Tran, P.S. Halasya-mani, J.B. Claridge, M.J. Rosseinsky, Adv. Mater. 27 (18) (2015) 2883-+ 2883-+. https://doi.org/10.1002/adma.201405452.
DOI URL |
[51] |
D. Lee, B.C. Jeon, S.H. Baek, S.M. Yang, Y.J. Shin, T.H. Kim, Y.S. Kim, J.-G. Yoon, C.B. Eom, T.W. Noh, Adv. Mater. 24 (48) (2012) 6490-6495.
DOI URL |
[52] |
T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Sens. Actuator A Phys. 102 (1-2) (2002) 106-113.
DOI URL |
[53] |
S.H. Kim, J.S. Lee, IEEE Electron Device Lett 20 (3) (1999) 113-115.
DOI URL |
[54] |
J. Molarius, J. Kaitila, T. Pensala, M. Ylilammi, J. Mater. Sci.- Mater. Electron. 14 (5-7) (2003) 431-435.
DOI URL |
[55] |
S.K. Acharya, B.G. Ahn, J.-H. Hyung, S.-K. Lee, J. Korean Phys. Soc. 62 (5) (2013) 794-799.
DOI URL |
[56] | D.Y. Wang, N.Y. Chan, S. Li, S.H. Choy, H.Y. Tian, H.L.W. Chan, Appl. Phys. Lett. 97 (2010) 5049. |
[57] |
W. Li, H. Zeng, J. Hao, J. Zhai, J. Alloys Compd. 580 (2013) 157-161.
DOI URL |
[58] |
W. Li, P. Li, H. Zeng, J. Hao, J. Zhai, Ceram. Int. 41 (2015) S356-S360.
DOI URL |
[59] |
J. Chen, Z. Tang, R. Tian, Y. Bai, H. Zhang, RSC Adv 6 (40) (2016) 33834-33842.
DOI URL |
[60] |
J.S. Park, M.H. Lee, D.J. Kim, D. Do, M.H. Kim, J.S. Kim, T.K. Song, S.W. Kim, H.I. Choi, K.W. Jang, I.R. Hwang, B.H. Park, J. Korean Phys. Soc. 62 (7) (2013) 1031-1034.
DOI URL |
[61] |
T. Sasaki, Y. Hirabayashi, H. Kobayashi, Y. Sakashita, Jpn. J. Appl. Phys. 50 (9) (2011) 09NA08.
DOI URL |
[62] | S. Fujino, M. Murakami, V. Anbusathaiah, S.H. Lim, V. Nagarajan, C.J. Fennie, M. Wuttig, L. Salamanca-Riba, I. Takeuchi, Appl. Phys. Lett. (2008) 92. |
[63] |
J. Park, M.H. Lee, D.J. Kim, M.-H. Kim, W.-J. Kim, D. Do, J.H. Jeon, B.H. Park, T.K. Song, RSC Adv 6 (108) (2016) 106899-106903.
DOI URL |
[64] | G. Lee, E.M.A. Fuentes-Fernandez, G. Lian, R.S. Katiyar, O. Auciello, Appl. Phys. Lett. 106 (2) (2015) 2463-400. |
[65] |
Y.J. Chen, S. Brahma, C.P. Liu, J.-L. Huang, J. Alloys Compd. 728 (2017) 1248-1253.
DOI URL |
[66] |
M. Laurenti, M. Castellino, D. Perrone, A. Asvarov, G. Canavese, A. Chiolerio, Sci. Rep. 7 (2017) 41957.
DOI PMID |
[67] |
T. Li, G. Wang, K. Li, G. Du, Y. Chen, Z. Zhou, D. Rémiens, X. Dong, Ceram. Int. 40 (2014) 1195-1198.
DOI URL |
[68] |
S.Y. Lee, C.W. Ahn, J.S. Kim, A. Ullah, H.J. Lee, H.-I. Hwang, J.S. Choi, B.H. Park, I.W. Kim, J. Alloys Compd. 509 (2011) L194-L198.
DOI URL |
[69] | R. Keech, L. Ye, J.L. Bosse, G. Esteves, J. Guerrier, J.L. Jones, M.A. Kuroda, B.D. Huey, S. Trolier-McKinstry, Adv. Funct. Mater. (2017) 27. |
[70] |
C. Ruangchalermwong, J.-F. Li, Z.-X. Zhu, F. Lai, S. Muensit, Thin Solid Films 517 (2009) 6599-6604.
DOI URL |
[71] |
H. Dong, M. Chen, H. Zhu, Y. Huang, Q. Ding, J. Feng, Ceram. Int. 46 (2020) 1883-1887.
DOI URL |
[72] | M.D. Nguyen, E.P. Houwman, M. Dekkers, G. Rijnders, ACS Appl. Mater. Inter-faces 9 (2017) 9849-9861. |
[73] |
M.D. Nguyen, E.P. Houwman, G. Rijnders, Sci. Rep. 7 (2017) 12915.
DOI PMID |
[74] | D.M. Kim, C.B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, D.G. Schlom, ApPhL 88 (2006). |
[75] | W. Gong, J.F. Li, X.C. Chu, Z.L. Gui, L.T. Li, ApPhL 85 (2004) 3818-3820. |
[1] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[2] | Zhengran Chen, Ruihong Liang, Chi Zhang, Zhiyong Zhou, Yuchen Li, Zhenming Liu, Xianlin Dong. High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling [J]. J. Mater. Sci. Technol., 2022, 116(0): 238-245. |
[3] | Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu. Tailoring depolarization temperature by phase transition causing properties evolution in Bi0.5(Na1-xKx)0.5TiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 114(0): 111-119. |
[4] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
[5] | Yingchun Liu, Hongjun Zhang, Wenming Shi, Qian Wang, Guicheng jiang, Bin Yang, Wenwu Cao, Jiubin Tan. Ultrahigh strain in textured BCZT-based lead-free ceramics with CuO sintering agent [J]. J. Mater. Sci. Technol., 2022, 117(0): 207-214. |
[6] | Lin Zhang, Nuomei Li, Qiuchen Ma, Jiahui Ding, Chuang Chen, Zhaocheng Hu, Weiwei Zhao, Yufeng Li, Huanhuan Feng, Mingyu Li, Hongjun Ji. Large-area flexible and transparent UV photodetector based on cross-linked Ag NW@ZnO NRs with high performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 65-72. |
[7] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[8] | Chang Feng, Zhuoyuan Chen, Jing Tian, Jiangping Jing, Li Ma, Jian Hou. Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance [J]. J. Mater. Sci. Technol., 2021, 90(0): 183-193. |
[9] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[10] | Zongyi Ma, Gang Li, Xinglai Zhang, Jing Li, Cai Zhang, Yonghui Ma, Jian Zhang, Bing Leng, Natalia Usoltseva, Vladimir An, Baodan Liu. High-performance and broadband photodetection of bicrystalline (GaN)1-x(ZnO)x solid solution nanowires via crystal defect engineering [J]. J. Mater. Sci. Technol., 2021, 85(0): 255-262. |
[11] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
[12] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
[13] | Anil Kunwar, Lili An, Jiahui Liu, Shengyan Shang, Peter Råback, Haitao Ma, Xueguan Song. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering [J]. J. Mater. Sci. Technol., 2020, 50(0): 115-127. |
[14] | Changsong Chen, Jiang Chen, Zhen Wang, Jian Zhang, Haisheng San, Shichao Liu, Chunyu Wu, Werner Hofmann. Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics [J]. J. Mater. Sci. Technol., 2020, 54(0): 48-57. |
[15] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||