J. Mater. Sci. Technol. ›› 2022, Vol. 114: 111-119.DOI: 10.1016/j.jmst.2021.09.066
• Research Article • Previous Articles Next Articles
Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu*()
Received:
2021-08-16
Revised:
2021-09-26
Accepted:
2021-09-27
Published:
2022-07-01
Online:
2022-01-14
Contact:
Jiagang Wu
About author:
* wujiagang0208@163.com (J. Wu).Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu. Tailoring depolarization temperature by phase transition causing properties evolution in Bi0.5(Na1-xKx)0.5TiO3 ceramics[J]. J. Mater. Sci. Technol., 2022, 114: 111-119.
Fig. 1. FE-SEM images of surface macrographs of BNKTx ceramics with different K contents: (a) x = 0.18, (b) x = 0.35, (c) x = 0.50, and (d) x = 0.80. (e) XRD patterns of unpoled BNKTx samples with different x contents, and their enlarged XRD patterns. (f-i) Grain size distributions from SEM images (f, g, h, i are derived from a, b, c and d, respectively).
Fig. 2. (a) The normalized d33 (measurement at in-situ environment) of poled BNKTx ceramics as a function of temperature. Variations of (b) d33, as well as (c) εr and tanδ values of BNKTx ceramics with different K contents.
Fig. 3. (a-e) Rietveld refinement of XRD results for the poled BNKTx samples (x = 0.2, 0.35, 0.5, 0.65, and 0.8), (f) variation of weight fraction of P4mm/R3c/P4bm phases with K doping.
Fig. 4. Composition-dependent vertical PFM images for the unpoled samples with (a, c, e) x=0.2 and (b, d, f) x=0.8 at the ambient temperature. The same scanning area of images (a-d) is 2μm×2μm. A negative DC voltage (30 V) was first applied to the tip during the scanning of a 4μm×4μm area. Then, a positive DC voltage with different values (5, 10, 15 and 20 V), depending on the scanning areas, was applied. (e, f) The PFM images for the poled x=0.2 sample (e) and x=0.8 sample (f), respectively. (g, h) Domain size distributions from PFM images (g and h are derived from a and b, respectively).
Fig. 5. Temperature dependence of poled dielectric constants and loss tangents of BNKTx ceramics: (a) x = 0.20, (b) x = 0.35, (c) x = 0.5, (d) x = 0.65, (e) x = 0.80, (f) x = 1.
Fig. 6. (a-c) Temperature-dependent polarization versus electric field (P-E) loops for BNKTx (x = 0.35, 0.80, 1.0). (d-f) Temperature-dependent Pr and EC derived from P-E loops.
Fig. 7. (a-c) Temperature-dependent bipolar electro-strain versus electric field (S-E) loops for BNKTx ceramics (x = 0.35, 0.80, 1.0). (d-f) And temperature-dependent Smax (maximum electro-strain) and Sneg (negative electro-strain) derived from temperature-dependent S-E loops.
Fig. 8. (a-c) Temperature-dependent unipolar electro-strain versus electric field (S-E) loops for BNKTx ceramics (x = 0.35, 0.80, 1.0). (d-f) And temperature-dependent S derived from temperature-dependent S-E loops.
[1] |
J. Zhang, Z. Pan, F. Guo, W. Liu, H. Ning, Y.B. Chen, M. Lu, B. Yang, J. Chen, S. Zhang, X. Xing, J. Rödel, W. Cao, Y. Chen, Nat. Commun. 6 (2015) 6615.
DOI URL PMID |
[2] |
H. Muramatsu, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 55 (2016) 10TB07.
DOI URL |
[3] | Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 96 (2010) 202901. |
[4] |
J. Zhang, R. Wang, L. Li, J. Wu, Y. Cui, Z. Gu, H. Zhang, M. Zhu, S. Zhang, B. Yang, J. Eur. Ceram. Soc. 39 (2019) 4705-4711.
DOI URL |
[5] |
D. Zhu, H. Liu, H. Luo, S. Sun, J. Chen, Ceram. Int. 46 (2020) 3708-3714.
DOI URL |
[6] |
B. Wang, L. Luo, F. Ni, P. Du, W. Li, H. Chen, J. Alloy. Compd 526 (2012) 79-84.
DOI URL |
[7] |
J. Yin, C. Zhao, Y. Zhang, J. Wu, J. Am. Ceram. Soc. 100 (2017) 5601-5609.
DOI URL |
[8] |
L. Wu, D. Xiao, F. Zhou, Y. Teng, Y. Li, J. Alloy. Compd. 509 (2011) 466-470.
DOI URL |
[9] | D. Lin, K.W. Kwok, H.L.W. Chan, Solid State Ion 178 (2008) 1930-1937. |
[10] |
F. Wang, M. Xu, C.M. Leung, Y. Tang, T. Wang, X. Chen, W. Shi, J. Mater. Sci. 47 (2012) 282-288.
DOI URL |
[11] |
Q. Wang, J. Chen, L. Fan, H. Song, W. Gao, Y. Rong, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96 (2013) 3793-3797.
DOI URL |
[12] |
Q. Wang, J. Chen, L. Fan, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96 (2013) 1171-1175.
DOI URL |
[13] | A. Ullah, M. Alam, A. Ullah, C.W. Ahn, J. Lee, S. Cho, I.W. Kim, RSC Adv 6 (2016) 63915. |
[14] |
W. Bai, P. Li, L. Li, J. Zhang, B. Shen, J. Zhai, J. Alloy. Compd. 649 (2015) 772-781.
DOI URL |
[15] |
D. Lin, K.W. Kwok, H.L.W. Chan, J. Alloy. Compd 481 (2009) 310-315.
DOI URL |
[16] |
Y. Lu, Y. Li, D. Wang, T. Wang, Q. Yin, J. Electroceram. 21 (2008) 309-313.
DOI URL |
[17] |
P. Fu, Z. Xu, R. Chu, W. Li, Q. Xie, G. Zang, Curr. Appl. Phys. 11 (2011) 822-826.
DOI URL |
[18] |
C. Zhou, X. Liu, W. Li, C. Yuan, G. Chen, J. Mater. Sci. 44 (2009) 3833-3840.
DOI URL |
[19] | Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104 (2008) 124106. |
[20] | Y. Hiruma, K. Yoshii, H. Nagata, T. Takenaka, J. Appl. Phys. 103 (2008) 084121. |
[21] |
X. Wang, H. Gao, X. Hao, X. Lou, Ceram. Int. 45 (2019) 4274-4282.
DOI URL |
[22] | L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, M. Kar, J. Mater. Sci. Mater. Elec- tron. 30 (2019) 9547-9557. |
[23] |
S.Y. Cho, E. Kim, S.Y. Kim, T.L. Pham, J.K. Han, D.S. Song, H. Jung, J. Lee, K. An, J. Lim, S.D. Bu, Energies 13 (2020) 455.
DOI URL |
[24] |
A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38 (1999) 5564-5567.
DOI URL |
[25] |
H. Ishii, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 40 (2001) 5660-5663.
DOI URL |
[26] | A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Algueró, H. AmorÍn, J. Phys. D 47 (2014) 055304. |
[27] |
P. Pookmanee, G. Rujijanagul, S. Ananta, R.B. Heimann, S. Phanichphant, J. Eur. Ceram. Soc. 24 (2004) 517-520.
DOI URL |
[28] |
S. Prasertpalichat, S. Khengkhatkan, T. Siritanon, J. Jutimoosik, P. Kidkhunthod, T. Bongkarn, E.A. Patterson, J. Eur. Ceram. Soc. 41 (2021) 4116-4128.
DOI URL |
[29] |
H. Xie, Y. Zhao, J. Xu, L. Yang, C. Zhou, H. Zhang, X. Zhang, W. Qiu, H. Wang, J. Alloy. Compd 743 (2018) 73-82.
DOI URL |
[30] | E. Anton, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 110 (2011) 094108. |
[31] | H. Qi, R. Zuo, J. Fu, M. Dou, Appl. Phys. Lett. 110 (2017) 112903. |
[32] |
J. Yin, H. Tao, G. Liu, J. Wu, J. Am. Ceram. Soc. 103 (2020) 1881-1890.
DOI URL |
[33] |
T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J. Li, Y. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci 10 (2017) 528-537.
DOI URL |
[34] |
F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L. Chen, T.R. Shrout S. Zhang, Nat. Mater 17 (2018) 349-354.
DOI URL |
[35] | F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z. Ye, J. Luo, T.R. Shrout, L. Chen, Nat. Commun. 7 (2016) 13807. |
[36] | L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, M. Kar, J. Mater. Sci. Mater. Elec- tron. 30 (2019) 9547-9557. |
[37] |
V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20 (2008) 5061-5073.
DOI URL |
[38] |
V. Pal, R.K. Dwivedi, O.P. Thakur, Curr. Appl. Phys. 14 (2014) 99-107.
DOI URL |
[39] |
J. Han, J. Yin, J. Wu, J. Eur. Ceram. Soc. 40 (2020) 5392-5401.
DOI URL |
[40] | F. Li, Z. Xu, X. Wei, X. Yao, J. Phys. D: Appl. Phys. 42 (2009) 095417. |
[41] | T. Rojac, M. Makarovic, J. Walker, H. Ursic, D. Damjanovic, T. Kos, Appl. Phys. Lett. 109 (2016) 042904. |
[42] | G.A. Rossetti Jr., A.G. Khachaturyan, G. Akcay, Y. Ni, J. Appl. Phys. 103 (2008) 114113. |
[43] |
T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J. Li, Y. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci 10 (2017) 528-537.
DOI URL |
[44] | W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H. Kleebe A.J. Bell J. Rödel, J. Appl. Phys. 110 (2011) 074106. |
[45] |
Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M.T. Lanagan, H. Hao, Z. Yao, H. Liu, J. Eur. Ceram. Soc. 37 (2017) 99-106.
DOI URL |
[46] |
P. Chen, C. Chen, C. Tu, P. Chen, J. Anthoniappen, J. Eur. Ceram. Soc. 36 (2016) 1613-1622.
DOI URL |
[47] | Y. Ehara, N. Novak, A. Ayrikyan, P.T. Geiger, K.G. Webber, J. Appl. Phys. 120 (2016) 174103. |
[48] | Y. Ehara, N. Novak, S. Yasui, M. Itoh, K.G. Webber, Appl. Phys. Lett. 107 (2015) 262903. |
[49] | J. Suchanicz, J. Kusz, H. Böhm, H. Duda, J.P. Mercurio, K. Konieczny, J. Eur. Ce- ram. Soc. 23 (2003) 1559-1564. |
[50] |
J. Suchanicz, A. Kania, P. Czaja, A. Budziak, A. Niewiadomski, J. Eur. Ceram. Soc. 38 (2018) 567-574.
DOI URL |
[51] |
J. Shi, H. Fan, Z. Li, Ferroelectrics 404 (2010) 93-98.
DOI URL |
[52] | W. Bai, P. Zheng, F. Wen, J. Zhang, D. Chen, J. Zhai, Z. Ji, Dalton Trans 46 (2017) 15340-15353. |
[53] |
K. Wang, A. Hussain, W. Jo, J. Rödel, J. Am. Ceram. Soc. 95 (2012) 2241-2247.
DOI URL |
[54] | W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rödel, Appl. Phys. Lett. 102 (2013) 192903. |
[55] |
W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29 (2012) 71-93.
DOI URL |
[56] |
V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik, Phys. Rev. B 60 (1999) 6420-6427.
DOI URL |
[57] |
L. Li, M. Zhu, Q. Wei, M. Zheng, Y. Hou, J. Hao, J. Eur. Ceram. Soc. 38 (2018) 1381-1388.
DOI URL |
[1] | Zaixin Wei, Zhongyang Wang, Ciqun Xu, Guohua Fan, Xiaoting Song, Yao Liu, Runhua Fan. Defect-induced insulator-metal transition and negative permittivity in La1-xBaxCoO3 perovskite structure [J]. J. Mater. Sci. Technol., 2022, 112(0): 77-84. |
[2] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||