J. Mater. Sci. Technol. ›› 2022, Vol. 114: 102-110.DOI: 10.1016/j.jmst.2021.11.017
• Research Article • Previous Articles Next Articles
Wei Zhanga, Zhichao Maa,b,*(), Chaofan Lia, Chaowei Guoc, Dongni Liua, Hongwei Zhaoa, Luquan Rend,e
Received:
2021-10-09
Revised:
2021-11-22
Accepted:
2021-11-28
Published:
2022-07-01
Online:
2022-01-15
Contact:
Zhichao Ma
About author:
*School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun 130025, China. E-mail address: zcma@jlu.edu.cn (Z. Ma).Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 114: 102-110.
Fig. 1. Phase identifications and sampling locations of pillars: (a) EBSD phase map, the colorful and white microregions corresponded to BCC and FCC phases, respectively, the selected FCC, BCC and FCC/BCC interphase were circled with different colors; (b) BSE image of the interface between FCC and BCC phases, the inset images at the bottom left and bottom right corresponded to the initial and ultimate thinned morphologies of a typical interphase pillar before and after fine milling procedures, respectively. The interphase and elliptical precipitations were highlighted by red dotted line and yellow circle, respectively.
Fig. 2. Characterization of performance and microstructure of the bulk HEA: (a) XRD pattern and (b) engineering stress-strain curve and corresponding (c) fracture morphology of a Fe24Co25Ni24Cr23Al4 HEA; (d) and (e) the EBSD inverse pole figure and phase mapping; (f) TEM morphology showing clubbed BCC precipitations embedded in FCC matrix, the SAED patterns showing the existence of FCC and BCC phases; (g) EDS elemental distribution analysis showing a Al-Ni rich BCC phase and Fe-Co-Cr rich FCC phase.
Fig. 4. Engineering stress-strain curves of FCC, BCC and interphase pillars in uniaxial compressive tests inside SEM, Δx and Δy denoted the amplitudes of strain burst and stress drop, respectively.
Fig. 5. SEM morphologies of post-deformed pillars: (a-c) the first and (d-f) second rows represented the morphologies of pillars with diameters of 800 nm and 1300 nm, respectively, and the first, second and third columns corresponded to the FCC, BCC and interphase pillars, respectively.
Fig. 7. TEM characterization to explain the stress fluctuation behavior and highly localized plasticity deformation at the interphase: (a) TEM image of the post-deformed BCC pillar with diameter of 1300 nm; (b) an enlarged view of rectangle in (a), the inset showed the SAED patterns of BCC1 and BCC2 phases; (c) high-resolution TEM image located at the BCC1/BCC2 interphase, corresponding to the white rectangle in (b); (d) inverse fast fourier transform (IFFT) image of yellow rectangle in (c) to indicate the drastic dislocations; (e) high-resolution TEM images showed the stacking fault located in the yellow rectangle in (b).
Pillars | FCC-1300 | FCC-800 | BCC-1300 | BCC-800 | interphase -1300 | interphase -800 |
---|---|---|---|---|---|---|
SHRs | 0.150 ± 0.012 | 0.277 ± 0.008 | 0.384 ± 0.015 | 0.474 ± 0.016 | 0.224 ± 0.008 | 0.118 ± 0.005 |
Table 1. Calculated strain hardening rates of pillars.
Pillars | FCC-1300 | FCC-800 | BCC-1300 | BCC-800 | interphase -1300 | interphase -800 |
---|---|---|---|---|---|---|
SHRs | 0.150 ± 0.012 | 0.277 ± 0.008 | 0.384 ± 0.015 | 0.474 ± 0.016 | 0.224 ± 0.008 | 0.118 ± 0.005 |
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL PMID |
[3] |
Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, Acta Mater. 99 (2015) 247-258.
DOI URL |
[4] | B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602. |
[5] |
X. Jin, Y.X. Liang, L. Zhang, J. Bi, Y. Zhou, B.S. Li, Mater. Sci. Eng. A 745 (2019) 137-143.
DOI URL |
[6] |
X. Jin, J. Bi, Y.X. Liang, J.W. Qiao, B.S. Li, Metall. Mater. Trans. A 52 (2021) 1314-1320.
DOI URL |
[7] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[8] |
F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61 (2013) 2628-2638.
DOI URL |
[9] |
I. Basu, V. Ocelík, J.T.M. De Hosson, Acta Mater. 157 (2018) 83-95.
DOI URL |
[10] |
H.Y. Diao, R. Feng, K.A. Dahmen, P.K. Liaw, Curr. Opin. Solid State Mater. Sci. 21 (2017) 252-266.
DOI URL |
[11] | X.J. Chang, M.Q. Zeng, K.L. Liu, L. Fu, Adv. Mater. 32 (2020) 1907226. |
[12] |
H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, T.J. Li, Mater. Des. 109 (2016) 539-546.
DOI URL |
[13] |
C. Ai, F. He, M. Guo, J. Zhou, Z.J. Wang, Z.W. Yuan, Y.J. Guo, Y.L. Liu, L. Liu, J. Alloy. Compd. 735 (2018) 2653-2662.
DOI URL |
[14] |
H. Jiang, K.M. Han, D.X. Qiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Mater. Chem. Phys. 210 (2018) 43-48.
DOI URL |
[15] |
S. Muskeri, V. Hasannaeimi, R. Salloom, M. Sadeghilaridjani, S. Mukherjee, Sci. Rep. 10 (2020) 2669.
DOI URL |
[16] | W. Zhang, Z.C. Ma, H.W. Zhao, L.Q. Ren, Mater. Sci. Eng. A 800 (2021) 140264. |
[17] |
M.D. Uchic, P.A. Shade, D.M. Dimiduk, Annu. Rev. Mater. Res. 39 (2009) 361-386.
DOI URL |
[18] | Y. Xiao, R. Kozak, M.J.R. Haché, W. Steurer, R. Spolenak, J.M. Wheeler, Y. Zou, Mater. Sci. Eng. A 790 (2020) 139429. |
[19] | T. Csanádi, E. Castle, M.J. Reece, J. Dusza, Sci. Rep. 9 (2019) 10200. |
[20] | A.M. Giwa, Z.H. Aitken, P.K. Liaw, Y.W. Zhang, J.R. Greer, Mater. Des. 191 (2020) 108611. |
[21] |
R. Raghavan, C. Kirchlechner, B.N. Jaya, M. Feuerbacher, G. Dehm, Scr. Mater. 129 (2017) 52-55.
DOI URL |
[22] | N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Mat-sunoshita, H. Mat-sunoshita, K. Tanaka, H. Inui, E. P.George, Sci.Rep. 6(2016)35863. |
[23] |
Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, A.M. Minor, Nat. Mater. 7 (2008) 115-119.
URL PMID |
[24] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65 (2014) 85-97.
DOI URL |
[25] |
H. Zaid, A. Aleman, S. Kodambaka, Scr. Mater. 178 (2020) 518-521.
DOI URL |
[26] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[27] |
L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, T.J. Li, Appl. Phys. A 119 (2015) 291-297.
DOI URL |
[28] |
C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, T.M. Wang, Int. J. Miner. Metall. Mater. 27 (2020) 1312-1317.
DOI URL |
[29] |
R.R. Huang, Q. Zhang, X. Zhang, J.G. Li, T.Q. Cao, J.H. Yao, Y.F. Xue, H.J. Gao, X.Y. Li, Sci. China Technol. Sci. 64 (2021) 11-22.
DOI URL |
[30] |
Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, T.J. Li, J. Alloy. Compd. 573 (2013) 96-101.
DOI URL |
[31] | Z.C. Ma, W. Zhang, H.W. Zhao, F.Z. Lu, Z.H. Zhang, L.M. Zhou, L.Q. Ren, J. Alloy. Compd. 817 (2020) 152709. |
[32] |
Z.C. Ma, H.W. Zhao, X.L. Hu, H.B. Cheng, S. Lu, L. Zhang, Mater. Des. 64 (2014) 566-572.
DOI URL |
[33] |
J.L. Li, Z. Li, Q. Wang, C. Dong, P.K. Liaw, Acta Mater. 197 (2020) 10-19.
DOI URL |
[34] | X.Z. Gao, Y.P. Lu, J.Z. Liu, J. Wang, T.M. Wang, Y.H. Zhao, Materialia 8 (2019) 100485. |
[35] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[36] |
Y. Dong, X.X. Gao, Y.P. Lu, T.M. Wang, T.J. Li, Mater. Lett. 169 (2016) 62-64.
DOI URL |
[37] |
F. Xiao, K.J. Chu, X.J. Jin, F.Z. Ren, T. Fukuda, T. Kakeshita, Q.P. Sun, Scr. Mater. 152 (2018) 141-145.
DOI URL |
[38] |
A. Kunz, S. Pathak, J.R. Greer, Acta Mater. 59 (2011) 4416-4424.
DOI URL |
[39] |
N.V. Malyar, J.S. Micha, G. Dehm, C. Kirchlechner, Acta Mater. 129 (2017) 312-320.
DOI URL |
[40] | S.M. Han, T.B. Grayeli, J. R.Groves, W. D.Nix, Scr.Mater. 63(2010)1153-1156. |
[41] |
C.S. Kaira, S.S. Singh, A. Kirubanandham, N. Chawla, Acta Mater. 120 (2016) 56-67.
DOI URL |
[42] | R. Sarvesha, U.R. Ghori, Y.L. Chiu, I.P. Jones, S.S. Singh, J. Jain, Mater. Sci. Eng. A 775 (2020) 138973. |
[43] |
A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, E. Arzt, Mater. Sci. Eng. A 528 (2011) 1540-1547.
DOI URL |
[44] | A. Seeger, Z. Metallkunde 93 (2002) 760-777. |
[45] | S. Brinckmann, J.Y. Kim, J.R. Greer, Phys. Rev. Lett. 100 (2008) 155502. |
[46] |
A.M. Giwa, P.K. Liaw, K.A. Dahmen, J.R. Greer, Extreme Mech. Lett. 8 (2016) 220-228.
DOI URL |
[47] |
T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, Scr. Mater. 56 (2007) 313-316.
DOI URL |
[48] |
C.A. Volkert, E.T. Lilleodden, Philos. Mag. 86 (2006) 5567-5579.
DOI URL |
[49] |
O.T. Abad, J.M. Wheeler, J. Michler, A.S. Schneider, E. Arzt, Acta Mater. 103 (2016) 483-494.
DOI URL |
[50] |
D. Kaufmann, R. Mönig, C.A. Volkert, O. Kraft, Int. J. Plast. 27 (2011) 470-478.
DOI URL |
[51] | A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, E. Arzt, Phys. Rev. Lett. 103 (2009) 105501. |
[52] | J. Kitagawa, S. Hamamoto, N. Ishizu, Metal 10 (2020) 1078. |
[53] |
Y.J. Liang, L.J. Wang, Y.R. Wen, B.Y. Cheng, Q.L. Wu, T.Q. Cao, Q. Xiao, Y.F. Xue, G. Sha, Y.D. Wang, Y. Ren, X.Y. Li, L. Wang, F.C. Wang, H.N. Cai, Nat. Commun. 9 (2018) 4063.
DOI URL |
[54] | Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A. Nie, T.C. Pu, M. Rehwoldt, D.W. Yu, M.R. Zachariah, C. Wang, R.S. Yassar, J. Li, L.B. Hu, Science 6383 (2018) 1489-1494. |
[55] | L. Rogal, Y.J. Ikeda, M.J. Lai, F. Körmann, A. Kalinowska, B. Grabowski, Mater. Des. 192 (2020) 108716. |
[56] | W.J. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z.M. Li, Adv. Mater. 30 (2018) 1804727. |
[57] | Y. Xiao, Y. Zou, A.S. Sologubenko, R. Spolenak, J.M. Wheeler, Mater. Des. 193 (2020) 108786. |
[58] |
X.S. Hu, S.F. Wang, Philos. Mag. 98 (2018) 484-516.
DOI URL |
[59] | M. Sadeghilaridjani, S. Muskeri, V. Hasannaeimi, M. Pole, S. Mukherjee, Mater. Sci. Eng. A 766 (2019) 138326. |
[60] |
J.R. Greer, J.T.M. De Hosson, Prog. Mater. Sci. 56 (2011) 654-724.
DOI URL |
[61] |
H.L. Guo, X. Zhang, F.L. Shang, B. Pan, T. Sumigawa, Int. J. Mech. Sci. 133 (2017) 438-448.
DOI URL |
[62] | C.R. Weinberger, W. Cai, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 14304-14307. |
[63] | J.R. Greer, W.D. Nix, Phys. Rev. B 73 (2006) 245410. |
[1] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[2] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[3] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[4] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[5] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[6] | Jinyong Zhang, Bingnan Qian, Wang Lin, Ping Zhang, Yijin Wu, Yangyang Fu, Yu Fan, Zheng Chen, Jun Cheng, Jinshan Li, Yuan Wu, Yu Wang, Fan Sun. Compressive deformation-induced hierarchical microstructure in a TWIP β Ti-alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 130-137. |
[7] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[8] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[9] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
[10] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[11] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[12] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[13] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[14] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[15] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||