J. Mater. Sci. Technol. ›› 2022, Vol. 114: 90-101.DOI: 10.1016/j.jmst.2021.11.011
• Research Article • Previous Articles Next Articles
A. Shuitceva,*(), Y. Rena, B. Sunb, G.V. Markovac, L. Lia, Y.X. Tonga(
), Y.F. Zhengd,*(
)
Received:
2021-10-13
Revised:
2021-11-10
Accepted:
2021-11-11
Published:
2022-07-01
Online:
2022-01-13
Contact:
A. Shuitcev,Y.X. Tong,Y.F. Zheng
About author:
yfzheng@pku.edu.cn (Y.F. Zheng).A. Shuitcev, Y. Ren, B. Sun, G.V. Markova, L. Li, Y.X. Tong, Y.F. Zheng. Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy[J]. J. Mater. Sci. Technol., 2022, 114: 90-101.
Fig. 2. A series of TEM images of Ni50Ti30Hf20 alloy aged at different regimes and the corresponding precipitate size distribution histograms. Bright-field TEM of samples aged at 650 °C for 6 min (a, b), 30 min (c) and 1 h (e). Bright-field TEM of samples aged at 450 °C for 3 h (f, g) and 10 h (j). SAED pattern taken from 10 h aged sample at 450 °C with reflects of H-phase (k). (d, h, i, l) The corresponding precipitate size distribution histograms.
Fig. 3. Typical STEM-HAADF images of Ni50Ti30Hf20 alloy aged at 650 °C for 15 min (a), 550 °C for 3 h (b) and 450 °C for 50 h (c). The insets in (a-c) show the volume fraction distribution histograms. Evolution of surface area fraction of the H-phase in the polycrystalline matrix of Ni50Ti30Hf20 alloy for the aging temperatures ranging from 450 °C to 650 °C (d) and the temperature dependence of the volume fraction of the H-phase at thermodynamic equilibrium state (e). Note: in figure volume fraction presented in% while all calculations were carried out in relative parts.
Fig. 4. (a) Determination of n and k parameters of the Johnson-Mehl-Avrami-Kolmogorov equation where n corresponds to the slope of the ln(ln(1/(1-f)) versus ln(t) plot while k can be calculated from the intercept. (b) Evolution of n parameter as a function of temperature.
Fig. 6. TTT diagrams of NiTiHf alloy where the red line represents the solvus temperature of the H-phase. (a) TTT diagram where the gray lines mark the beginning, middle and end of H-phase precipitation. (b) TTT diagram showing the volume fractions of H-phase at different time and temperatures. Solid lines represent JMAK model within the considered temperature range and dash lines represent the extrapolated data.
Fig. 7. (a) Temporal evolution of average length and width of H-precipitate of NiTiHf alloy during isothermal aging at 450, 550 and 650 °C. (b) Plots of ln(r) vs. ln(t) for isothermal aging temperatures giving temporal growth exponent of H-precipitates, which corresponds to classical LSW growth exponent. (c) Plots showing linear fit of radius equivalent size of H-phase precipitate (r3 in nm3) vs. aging time (t) during isothermal aging at 450, 550 and 650 °C along with respective LSW rate constant..
Temperature, °C | Temporal exponent, n-1 | Rate constant Kr, m3 s-1 |
---|---|---|
450 | 0.281 ± 0.004 | 4.7 × 10-31 |
550 | 0.297 ± 0.052 | 2.1 × 10-29 |
650 | 0.295 ± 0.031 | 1.294 × 10-27 |
Table 1. Calculated temporal exponent and LSW rate constant.
Temperature, °C | Temporal exponent, n-1 | Rate constant Kr, m3 s-1 |
---|---|---|
450 | 0.281 ± 0.004 | 4.7 × 10-31 |
550 | 0.297 ± 0.052 | 2.1 × 10-29 |
650 | 0.295 ± 0.031 | 1.294 × 10-27 |
Fig. 8. Plot between the coarsening rate constant (ln(Kr,T) vs. inverse of heat-treatment temperature (1000/T) with linear fit using linear regression analysis to calculate activation energy (QCoarsening).
Fig. 11. The gain in hardness (∆HV) as a function of $f_{\text{t}}^{0.5}{{L}^{0.5}}$ (a) and $f_{t}^{0.5}/L$ (b). The insets in (a) and (b) show the temperature dependence of Ccut and Cb constants, respectively.
Fig. 13. Evolution of Mp temperatures as a function of aging time for Ni50Ti30Hf20 alloy (a) and the influence of volume fraction (b) and size (c) of H-phase on ∆Mp temperature.
[1] |
J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55 (2010) 257-315.
DOI URL |
[2] |
J. Van Humbeeck, Mater. Res. Bull. 47 (2012) 2966-2968.
DOI URL |
[3] |
H.E. Karaca, E. Acar, H. Tobe, S.M. Saghaian, Mater. Sci. Technol. 30 (2014) 1530-1544.
DOI URL |
[4] | Y.X. Tong, A.V. Shuitcev, Y.F. Zheng, Adv. Eng. Mater. 22 (2020) 1900496. |
[5] |
H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, Y.I. Chumlyakov, Acta Mater. 61 (2013) 7422-7431.
DOI URL |
[6] |
X.L. Meng, W. Cai, F. Chen, L.C. Zhao, Scr. Mater. 54 (2006) 1599-1604.
DOI URL |
[7] | O. Karakoc, K.C. Atli, A. Evirgen, J. Pons, R. Santamarta, O. Benafan, R.D. Noebe, I. Karaman, Mater. Sci. Eng. A 794 (2020) 139857. |
[8] |
G.S. Bigelow, A. Garg, S.A. Padula II, D.J. Gaydosh, R.D. Noebe, Scr. Mater. 64 (2011) 725-728.
DOI URL |
[9] |
S.M. Saghaian, H.E. Karaca, M. Souri, A.S. Turabi, R.D. Noebe, Mater. Des. 101 (2016) 340-345.
DOI URL |
[10] |
H.E. Karaca, E. Acar, G.S. Ded, B. Basaran, H. Tobe, R.D. Noebe, G.S. Bigelow, Y.I. Chumlyakov, Acta Mater. 61 (2013) 5036-5049.
DOI URL |
[11] |
S.M. Saghaian, H.E. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S.E. Saghaian, Y.I. Chumlyakov, R.D. Noebe, Acta Mater. 134 (2017) 211-220.
DOI URL |
[12] |
A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R.D. Noebe, Acta Mater. 83 (2015) 48-60.
DOI URL |
[13] |
C. Hayrettin, O. Karakoc, I. Karaman, J.H. Mabe, R. Santamarta, J. Pons, Acta Mater. 163 (2019) 1-13.
DOI URL |
[14] |
X.D. Han, R. Wang, Z. Zhang, D.Z. Yang, Acta Mater. 46 (1998) 273-281.
DOI URL |
[15] |
F. Yang, D.R. Coughlin, P.J. Phillips, L. Yang, A. Devaraj, L. Kovarik, R.D. Noebe, M.J. Mills, Acta Mater. 61 (2013) 3335-3346.
DOI URL |
[16] |
B.C. Hornbuckle, T.T. Sasaki, G.S. Bigelow, R.D. Noebe, M.L. Weaver, G.B. Thomp-son, Mater. Sci. Eng. A 637 (2015) 63-69.
DOI URL |
[17] |
M. Moshref-Javadi, S.H. Seyedein, M.T. Salehi, M.R. Aboutalebi, Acta Mater. 61 (2013) 2583-2594.
DOI URL |
[18] | T.W. Yu, Y.P. Gao, L. Casalena, P. Anderson, M. Mills, Y.Z. Wang, Acta Mater. 208 (2021) 116651. |
[19] |
R. Santamarta, R. Arroyave, J. Pons, A. Evirgen, I. Karaman, H.E. Karaca, R.D. Noebe, Acta Mater. 61 (2013) 6191-6206.
DOI URL |
[20] |
M. Prasher, D. Sen, J. Bahadur, R. Tewari, M. Krishnan, J. Alloy. Compd. 779 (2019) 630-642.
DOI URL |
[21] |
A.V. Shuitcev, Y.X. Tong, L. Li, Vacuum 160 (2019) 25-30.
DOI URL |
[22] | J.C. Russ, R.T. Dehoff, Practical Stereology, 2nd ed., Springer Science + Business Media, New York, 2000. |
[23] |
A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong, J. Mater. Sci. Technol. 52 (2020) 218-225.
DOI URL |
[24] | S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Be-nafan, G.B. Bigelow, R.D. Noebe, G.B. Thompson, Mater. Sci. Eng. A 801 (2021) 140401. |
[25] | Y.X. Tong, X.M. Fan, A. Shuitcev, F. Chen, B. Tian, L. Li, Y.F. Zheng, J. Alloy. Compd. 845 (2020) 156331. |
[26] | J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 2002. |
[27] |
S.V. Divinski, I. Stloukal, L. Kral, C. Herzig, Defect Diffus. Forum 289-292 (2009) 377-382 Fam Plan West Hemisph.
DOI URL |
[28] |
Y. Mishin, C. Herzig, Acta Mater. 48 (2000) 589-623.
DOI URL |
[29] | A.A. Baturin, A.I. Lotkov, Phys. Met. Metall. 76 (1993) 168-170. |
[30] |
S.E. Kulkova, A.V. Bakulin, Q.M. Hu, R. Yang, Phys. B 426 (2013) 118-126.
DOI URL |
[31] | S.E. Kulkova, A.V. Bakulin, Q.M. Hu, R. Yang, Mater. Today Proc 2S (2015) S615-S618. |
[32] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50.
DOI URL |
[33] | C. Wagner, Z. Elektrochem. 65 (1961) 581-591. |
[34] |
J.D. Boyd, R.B. Nicholson, Acta Metall. 19 (1971) 1379-1391.
DOI URL |
[35] |
S. Zuo, R. Wu, G. Pang, Y. Yang, M. Jin, Intermetallics 109 (2019) 174-178.
DOI URL |
[36] | H. Mehrer, in:Diffusion in Solid Metals and Alloys, Springer Berlin Heidelberg, Berlin, 1990, p. 747. |
[37] | N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier Butter- worth-Heinemann, Oxford, 2012. |
[38] | J. Friedel, Dislocations, Pergamon Press, London, 1964. |
[39] | R.E. Smallman, R.J. Bishop, in: Modern Physical Metallurgy and Materials Engi- neering, Butterworth-Heinemann, Oxford, 1999, p. 438. |
[40] |
A. Shuitcev, R.N. Vasin, X.M. Fan, A.M. Balagurov, I.A. Bobrikov, L. Li, I.S. Golovin, Y.X. Tong, Scr. Mater. 178 (2020) 67-70.
DOI URL |
[41] |
R. Hasiguti, K. Iwasaki, J. Appl. Phys. 39 (1968) 2182-2186.
DOI URL |
[42] | M. Perez-Cerrato, B. Maass, M.L. No, J. San Juan, J. Alloy. Compd. 856 (2021) 157948. |
[43] | A. Shuitcev, L. Li, G.V. Markova, I.S. Golovin, Y.X. Tong, Mater. Lett. 262 (2020) 127025. |
[44] |
H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 38 (1990) 1789-1802.
DOI URL |
[45] |
H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 38 (1990) 1803-1812.
DOI URL |
[1] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[2] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[3] | Mahdi Moshref-Javadi, Majid Belbasi, Seyed Hossein Seyedein, Mohammad Taghi Salehi. Fabrication of (Ti,Hf)-rich NiTiHf Alloy Using Graphitic Mold and Crucible [J]. J. Mater. Sci. Technol., 2014, 30(3): 280-284. |
[4] | H.B. Motejadded, M. Soltanieh, S. Rastegari. Coarsening Kinetics of γ′ Precipitates in Dendritic Regions of a Ni3Al Base Alloy [J]. J Mater Sci Technol, 2012, 28(3): 221-228. |
[5] | Yunqing MA, Chengbao JIANG, Lifen DENG, Huibin XU. Effects of Composition and Thermal Cycle on Transformation Behaviors, Thermal Stability and Mechanical Properties of CuAlAg Alloy [J]. J Mater Sci Technol, 2003, 19(05): 431-434. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||