J. Mater. Sci. Technol. ›› 2022, Vol. 110: 109-116.DOI: 10.1016/j.jmst.2021.08.034
• Research Article • Previous Articles Next Articles
Xuehui Yana, Peter K. Liawb, Yong Zhanga,*()
Received:
2021-06-08
Revised:
2021-07-14
Accepted:
2021-08-01
Published:
2021-11-09
Online:
2021-11-09
Contact:
Yong Zhang
About author:
* E-mail address: drzhangy@ustb.edu.cn (Y. Zhang).Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates[J]. J. Mater. Sci. Technol., 2022, 110: 109-116.
Fig. 1. Composition design and structure of (Zr0.5Ti0.35Nb0.15)100-xAlx alloys. (a) Schematic diagram of composition-design philosophy. The internal XRD shows a single BCC lattice structure of as-cast (Zr0.5Ti0.35Nb0.15)100-xAlx alloys. (b) EBSD maps of the (Zr0.5Ti0.35Nb0.15)90Al10 alloy. (c) TEM bright-field image of the as-cast (Zr0.5Ti0.35Nb0.15)90Al10 alloy. The corresponding selected area electron diffraction (SAED) pattern is as an inset. (d, e) 3D APT reconstructions: atomic distributions and concentration of components.
Nominal composition (at.%) | Actual composition (at.%) | Theoretical densities (g/cm3) | Formula: |
---|---|---|---|
(Zr0.5Ti0.35Nb0.15)90Al10 | Zr45.9Ti31.0Nb12.7Al10.4 | 5.79 | |
(Zr0.5Ti0.35Nb0.15)80Al20 | Zr41.3Ti27.8Nb11.4Al19.5 | 5.58 |
Table 1. Nominal composition, actual composition, and theoretical densities of the (Zr0.5Ti0.35Nb0.15)100-xAlx alloy.
Nominal composition (at.%) | Actual composition (at.%) | Theoretical densities (g/cm3) | Formula: |
---|---|---|---|
(Zr0.5Ti0.35Nb0.15)90Al10 | Zr45.9Ti31.0Nb12.7Al10.4 | 5.79 | |
(Zr0.5Ti0.35Nb0.15)80Al20 | Zr41.3Ti27.8Nb11.4Al19.5 | 5.58 |
Fig. 2. Compressive and tensile properties of (Zr0.5Ti0.35Nb0.15)100-xAlx alloys at room temperature. (a) Compressive engineering stress-strain curves. Morphologies of compressed Al10 and Al20 samples as insets. (b) The true tensile stress-strain curves of Al10 and Al20 alloys. (Abbreviation: yield strength (YS), tensile strength (TS), and tensile strain (ε)).
Fig. 3. Microstructure and tensile properties of recovery and recrystallization (Zr0.5Ti0.35Nb0.15)90Al10 alloys. (a) Microstructure of the recovery Al10 alloy (a-I: Orientation map, a-II: grain map). (b) Microstructure of the recrystallization Al10 alloy (b-I: recrystallization map, b-II: grain map). (c) The true tensile stress-strain curves.
Fig. 4. Deformed microstructure of the as-cast Al10 alloy. (a) TEM observation of the dislocation pattern in different tensile strains (ε): low strain of a-I, middle strain of a-II, and high strain of a-III. (b) EBSD image of tensile fracture. The regions I, II, and III correspond to a-I, a-II, and a-III, respectively. (c) A magnified view of loops and dislocation tangles. (d) A magnified view of double dislocation cross-slip.
Fig. 5. Deformed microstructure of recovery and recrystallization Al10 alloys. (a, b) Deformation microstructure in recovery and recrystallization Al10 alloy. Magnified view of short-rod dislocations is as an inset in Fig. 5(b). (c) Morphology of the interaction between nanoprecipitates and dislocations: (c-I) dislocation bypass mechanism; (c-II) dislocation-shearing mechanism. (d) Morphology and composition of spherical precipitates. (e) SAED pattern of matrix and nanoprecipitates. Matrix and precipitates are highlighted in yellow and red, respectively. (f) HRTEM image of the matrix and nano-precipitates.
Fig. 6. Discussion of strain-hardening ability. (a) Strain-hardening ability and related microstructures. (b) Schematic illustration of deformation mechanisms. [Residual dislocations: reserved after cold-rolling and recovery annealing. (Tensile dislocations: generated during the tensile deformation).
Fig. 7. Comparison of the current BCC-HEAs with existing HEAs and amorphous alloys. (a) Maps of yield strength versus tensile strain of HEAs and amorphous alloys reported previously at room temperature (Abbreviation: Yield strength (YS), Tensile strength (TS), Amorphous alloy (AM)). (b) Maps of specific strength versus density of HEAs and amorphous alloys reported previously at room temperature.
[1] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[3] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[4] |
Q.Q. Ding, X.Q. Fu, D.K. Chen, H.B. Bei, B. Gludovatz, J.X. Li, Z. Zhang, E.P. George, Q. Yu, T. Zhu, R.O. Ritchie, Mater. Today 25 (2019) 21-27.
DOI URL |
[5] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater 128 (2017) 292-303.
DOI URL |
[6] |
P.J. Shi, Y.B. Zhong, Y. Li, W.L. Ren, T.X. Zheng, Z. Shen, B. Yang, J.C. Peng, P.F. Hu, Y. Zhang, P.K. Liaw, Y.T. Zhu, Mater. Today 41 (2020) 62-71.
DOI URL |
[7] |
Y.J. Liang, L.J. Wang, Y.R. Wen, B.Y. Cheng, Q.L. Wu, T.Q. Cao, Q. Xiao, Y.F. Xue, G. Sha, Y.D. Wang, Y. Ren, X.Y. Li, L. Wang, F.C. Wang, H.N. Cai, Nat. Commun. 9 (2018) 4063-4070.
DOI URL |
[8] |
S.L. Wei, S.J. Kim, J.Y. Kang, Y. Zhang, Y.J. Zhang, T. Furuhara, E.S. Park, C.C. Tasan, Nat. Mater. 19 (2020) 1175-1181.
DOI URL |
[9] | D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin-Engl. 32 (2019) 3-9. |
[10] |
W.R. Zhang, P.K. Liaw, Y. Zhang, Entropy 20 (2018) 951-971.
DOI URL |
[11] |
L. Wang, C. Fu, Y.D. Wu, R.G. Li, Y.D. Wang, X.D. Hui, Mater. Sci. Eng. A 748 (2019) 441-452.
DOI URL |
[12] |
S.P. Wang, J. Xu, Mater. Sci. Eng. C 73 (2017) 80-89.
DOI URL |
[13] | H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, Z.P. Lu, Adv. Mater. 29 (2017) 1701678. |
[14] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater 65 (2014) 85-97.
DOI URL |
[15] | S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Kle- ment, S. Guo, J. Appl. Phys. 120 (2016) 164902. |
[16] | S.S. Sohn, A.K. Da Silva, Y. Ikeda, F. Koermann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2019) 1807142. |
[17] |
L. Lilensten, J.P. Couzinié, L. Perrière, A. Hocini, C. Keller, G. Dirras, I. Guillot, Acta Mater 142 (2018) 131-141.
DOI URL |
[18] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509 (2011) 6043-6048.
DOI URL |
[19] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[20] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, Z.P. Lu, Acta Mater 102 (2016) 187-196.
DOI URL |
[21] |
B. Gwalani, D. Choudhuri, V. Soni, Y. Ren, M. Styles, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Acta Mater 129 (2017) 170-182.
DOI URL |
[22] |
S.H. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z.P. Lu, Nature 544 (2017) 460-464.
DOI URL |
[23] | I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, IOP Conf. Ser.: Mater. Sci. Eng. 194 (2017) 012018. |
[24] |
Z. Fu, B.E. Macdonald, Z. Li, Z. Jiang, W. Chen, Y. Zhou, E.J. Lavernia, Mater. Res. Lett. 6 (2018) 634-640.
DOI URL |
[25] |
Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102 (2019) 296-345.
DOI URL |
[26] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, Science 362 (2018) 933-937.
DOI PMID |
[27] |
J.Ph. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, Mater. Sci. Eng. A 645 (2015) 255-263.
DOI URL |
[28] |
J.L. Chaussidon, M. Fivel, D. Rodney, Acta Mater 54 (2006) 3407-3416.
DOI URL |
[29] |
K. Srivastava, D. Weygand, D. Caillard, P. Gumbsch, Nat. Commun. 11 (2020) 5098.
DOI PMID |
[30] | S.I. Hong, C. Laird, Acta Mater 38 (1990) 1581-1594. |
[31] | J.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-Hill Book Company, New York, 1972. |
[32] | S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, W.A. Curtin, Acta Mater 134 (2017) 311-320. |
[33] | B. Chen, S. Li, H. Zong, X. Ding, E. Ma, Natl. Acad. Sci. U.S.A. 117 (2020) 201919136. |
[34] |
F.L. Wang, G.H. Balbus, S.Z. Xu, Y.Q. Su, J.H. Shin, P.F. Rottmann, K.E. Knipling, J.C. Stinville, L.H. Mills, O.N. Senkov, I.J. Beyerlein, T.M. Pollock, D.S. Gianola, Science 370 (2020) 95-101.
DOI URL |
[35] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
[36] | X.H. Yan, J. Ma, Y. Zhang, Sci. China Phys. Mech. 62 (2019) 996111. |
[37] |
X.H. Yan, Y. Zhang, Scr. Mater. 178 (2020) 329-333.
DOI URL |
[38] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[39] |
S.B. Wang, M.X. Wu, D. Shu, G.L. Zhu, D.H. Wang, B.D. Sun, Acta Mater 201 (2020) 517-527.
DOI URL |
[40] |
D. Caillard, Acta Mater 61 (2013) 2808-2827.
DOI URL |
[41] | E. Nembach, Particle Strengthening of Metals and Alloys, Wiley-VCH, New York, 1997. |
[1] | Li Xiaolin, Hao Xiaoxiao, Jin Chi, Wang Qi, Deng Xiangtao, Wang Haifeng, Wang Zhaodong. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[2] | Guo Fei, Huang Weijiu, Yang Xusheng, Dong Haipeng, Yu Hang, Chen Qiuyu, Hu Li, Jiang Luyao. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[3] | Ji Pengfei, Chen Bohan, Liu Shuguang, Li Bo, Xia Chaoqun, Zhang Xinyu, Ma Mingzhen, Liu Riping. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[4] | Jiang Shuang, Lin Peng Ru, Máthis Kristián, Yan Hai-Le, Farkas Gergely, Hegedues Zoltán, Lienert Ulrich, Moverare Johan, Zhao Xiang, Zuo Liang, Jia Nan, Wang Yan-Dong. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
[5] | Zhao L., Jiang L., Yang L.X., Wang H., Zhang W.Y., Ji G.Y., Zhou X., Curtin W.A., Chen X.B., Liaw P.K., Chen S.Y., Wang H.Z.. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
[6] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
[7] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[8] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[9] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[10] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[11] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[12] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[13] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[14] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[15] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||