J. Mater. Sci. Technol. ›› 2022, Vol. 110: 103-108.DOI: 10.1016/j.jmst.2021.09.021
• Letter • Previous Articles Next Articles
Congying Xianga, Min Shena, Chongze Hub, Lok Wing Wongc, Hongbo Nied, Huasheng Leia, Jian Luob, Jiong Zhaoc,*(), Zhiyang Yua,e,**(
)
Revised:
2021-08-15
Published:
2022-05-30
Online:
2022-05-27
Contact:
Jiong Zhao,Zhiyang Yu
About author:
**State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.E-mail addresses: yuzyemlab@fzu.edu.cn (Z. Yu)Congying Xiang, Min Shen, Chongze Hu, Lok Wing Wong, Hongbo Nie, Huasheng Lei, Jian Luo, Jiong Zhao, Zhiyang Yu. Atomistic observation of in situ fractured surfaces at a V-doped WC-Co interface[J]. J. Mater. Sci. Technol., 2022, 110: 103-108.
Fig. 1. Sequential TEM images showing the in situ TEM mechanical bending experiment conducted on a FIB lamella. (a) The configuration before loading. The purple symbol denotes the indentation direction pushing downward along the beam direction, and a precut notch was indicated by a white arrow. (b) No crack was observed after 3 min of continual loading. The arrows indicate bending contours. A crack initiated at the notch (c) and propagated along with a WC-Co interface (d, e). (f) The crack deflected into an abutting WC grain. The red arrows in (d-f) indicate the fracture path.
Fig. 2. AC-STEM characterization of an interested WC-Co interface before fracture. (a, b) Kikuchi patterns of the Co binder and the WC grain, respectively. (c) High-resolution HAADF image of the interface. Inset: Low magnified BF image of the interface. EDS maps across the interface were given in (d-g). (h) Line profile of W (M edge), Co (K edge), and V (K edge) signals integrated across the interface. (i) Composition profile of W, Co, and V solutes for each interfacial layer. The shaded areas in (h, i) are used to denote the interfacial complexion.
Fig. 3. AC-STEM characterization of the as-fractured WC-Co interface. (a) The first frame of the HAADF image of the cleavage surface on the WC side, acquired under a low screen current (20 pA) without introducing discernable beam damage. Inset was a low magnified BF image of the interface. EDS maps (b-e), EDS intensity line profile (f), and composition profile (g) analysis were performed across the interface. The shaded areas in (f, g) are used to highlight the interfacial complexion.
Fig. 4. (a) DFT-optimized interfacial structure of a V-doped WC(B)-Co interface. The atomic configuration was constructed from the experimental interfacial structure in Fig. 2. The interfacial layers dominated by metallic and carbon atoms are labeled by subscript M and C, respectively. (b) Works of separation (Wsep) as a function of separation positions across the interface.
[1] |
S. Norgren, J. García, A. Blomqvist, L. Yin, Int. J. Refract. Met. Hard Mater. 48 (2015) 31-45.
DOI URL |
[2] |
J. García, V. Collado Ciprés, A. Blomqvist, B. Kaplan, Int. J. Refract. Met. Hard Mater. 80 (2019) 40-68.
DOI URL |
[3] |
X. Liu, X. Song, H. Wang, X. Liu, F. Tang, H. Lu, Acta Mater. 149 (2018) 164-178.
DOI URL |
[4] |
P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Acta Mater. 62 (2014) 1-48.
DOI URL |
[5] |
S.A.E. Johansson, G. Wahnström, Curr. Opin. Solid State Mater. Sci. 20 (2016) 299-307.
DOI URL |
[6] |
W.D. Kaplan, D. Chatain, P. Wynblatt, W.C. Carter, J. Mater. Sci. 48 (2013) 5681-5717.
DOI URL |
[7] |
S. Farag, I. Konyashin, B. Ries, Int. J. Refract. Met. Hard Mater. 77 (2018) 12-30.
DOI URL |
[8] |
S. Lay, S. Hamar-Thibault, A. Lackner, Int. J. Refract. Met. Hard Mater. 20 (2002) 61-69.
DOI URL |
[9] |
S. Lay, J. Thibault, S. Hamar-Thibault, Philos. Mag. 83 (2003) 1175-1190.
DOI URL |
[10] |
S. Lay, S. Hamar-Thibault, M. Loubradou, Interface Sci. 12 (2004) 187-195.
DOI URL |
[11] |
A. Delano, M. Bacia, E. Pauty, S. Lay, C.H. Allibert, J. Cryst. Growth 270 (2004) 219-227.
DOI URL |
[12] |
I. Sugiyama, Y. Mizumukai, T. Taniuchi, K. Okada, F. Shirase, T. Tanase, Y. Ikuhara, T. Yamamoto, Scr. Mater. 69 (2013) 473-476.
DOI URL |
[13] | C. Yang, C. Hu, C. Xiang, H. Nie, X. Gu, L. Xie, J. He, W. Zhang, Z. Yu, J. Luo, J. Luo, Sci. Adv. 7 (2021) eabf6667. |
[14] |
K.P. Mingard, H.G. Jones, M.G. Gee, B. Roebuck, J.W. Nunn, Int. J. Refract. Met. Hard Mater. 36 (2013) 136-142.
DOI URL |
[15] | T. Csanádi, M. Vojtko, J. Dusza, Int. J. Refract. Met. Hard Mater. 87 (2020) 105163. |
[16] |
S. Kondo, A. Ishihara, E. Tochigi, N. Shibata, Y. Ikuhara, Nat. Commun. 10 (2019) 2112.
DOI PMID |
[17] |
Y. Yue, Y. Gao, W. Hu, B. Xu, J. Wang, X. Zhang, Q. Zhang, Y. Wang, B. Ge, Z. Yang, Z. Li, P. Ying, X. Liu, D. Yu, B. Wei, Z. Wang, X.F. Zhou, L. Guo, Y. Tian, Nature 582 (2020) 370-374.
DOI URL |
[18] | L. Huang, F. Zheng, Q. Deng, Q.H. Thi, L.W. Wong, Y. Cai, N. Wang, C.S. Lee, S.P. Lau, M. Chhowalla, J. Li, T.H. Ly, J. Zhao, Phys. Rev. Lett. 125 (2020) 246102. |
[19] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
DOI PMID |
[20] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI URL |
[21] |
X. Song, Y. Gao, X. Liu, C. Wei, H. Wang, W. Xu, Acta Mater. 61 (2013) 2154-2162.
DOI URL |
[22] | H. Xie, X. Song, F. Yin, Y. Zhang, Sci. Rep. 6 (2016) 31047. |
[23] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
DOI PMID |
[24] |
Y.J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, Nat. Commun. 9 (2018) 4063.
DOI URL |
[25] |
A. Meingast, E. Coronel, A. Blomqvist, S. Norgren, G. Wahnström, M. Lattemann, Int. J. Refract. Met. Hard Mater. 72 (2018) 135–140.
DOI URL |
[26] |
Z. Luo, C. Hu, L. Xie, H. Nie, C. Xiang, X. Gu, J. He, W. Zhang, Z. Yu, J. Luo, Mater. Horiz. 7 (2020) 173-180.
DOI URL |
[27] |
X. Liu, X. Liu, H. Lu, H. Wang, C. Hou, X. Song, Z. Nie, Acta Mater. 175 (2019) 171-181.
DOI URL |
[28] |
M.R. Elizalde, I. Ocañ, J. Alkorta, J.M. Sánchez-Moreno, Int. J. Refract. Met. Hard Mater. 72 (2018) 39-44.
DOI URL |
[1] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
[2] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[3] | Huaxin Hu, Xuemei Liu, Jinghong Chen, Hao Lu, Chao Liu, Haibin Wang, Junhua Luan, Zengbao Jiao, Yong Liu, Xiaoyan Song. High-temperature mechanical behavior of ultra-coarse cemented carbide with grain strengthening [J]. J. Mater. Sci. Technol., 2022, 104(0): 8-18. |
[4] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[5] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[6] | Diao-Feng Li, Ya-Long Yang, Yong Shen, Jian Xu. Bending fatigue behavior of thin Zr61Ti2Cu25Al12 bulk metallic glass beams for compliant mechanisms application [J]. J. Mater. Sci. Technol., 2021, 89(0): 1-15. |
[7] | Fang Wang, Liu He, Xiangguo Zeng, Zhongpeng Qi, Bo Song, Xin Yang. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size [J]. J. Mater. Sci. Technol., 2021, 77(0): 90-99. |
[8] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[9] | Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 173-182. |
[10] | Yafei Wang, Rui Chen, Xu Cheng, Yanyan Zhu, Jikui Zhang, Huaming Wang. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing [J]. J. Mater. Sci. Technol., 2019, 35(2): 403-408. |
[11] | Haibin Wang, Mark Gee, Qingfan Qiu, Hannah Zhang, Xuemei Liu, Hongbo Nie, Xiaoyan Song, Zuoren Nie. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions [J]. J. Mater. Sci. Technol., 2019, 35(11): 2435-2446. |
[12] | Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites [J]. J. Mater. Sci. Technol., 2018, 34(9): 1580-1591. |
[13] | Xiangzhao Zhang, Guiwu Liu, Junnan Tao, Yajie Guo, Jingjing Wang, Guanjun Qiao. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: Microstructures and joint mechanical behavior [J]. J. Mater. Sci. Technol., 2018, 34(7): 1180-1188. |
[14] | Lianghua Lin, Zhiyi Liu, Wenjuan Liu, Yaru Zhou, Tiantian Huang. Effects of Ag Addition on Precipitation and Fatigue Crack Propagation Behavior of a Medium-Strength Al-Zn-Mg Alloy [J]. J. Mater. Sci. Technol., 2018, 34(3): 534-540. |
[15] | Yi-jun Li, Rui-dong Fu, Yan Li, Yan Peng, Hui-jie Liu. Tensile properties and fracture behavior of friction stir welded joints of Fe-32Mn-7Cr-1Mo-0.3N steel at cryogenic temperature [J]. J. Mater. Sci. Technol., 2018, 34(1): 157-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||