J. Mater. Sci. Technol. ›› 2021, Vol. 77: 90-99.DOI: 10.1016/j.jmst.2020.10.041
• Research Article • Previous Articles Next Articles
Fang Wanga,*(), Liu Hea, Xiangguo Zengb,*(
), Zhongpeng Qia, Bo Songa, Xin Yangc
Received:
2020-07-26
Revised:
2020-10-03
Accepted:
2020-10-06
Published:
2021-06-30
Online:
2020-11-21
Contact:
Fang Wang,Xiangguo Zeng
About author:
xiangguozeng@scu.edu.cn (X. Zeng).Fang Wang, Liu He, Xiangguo Zeng, Zhongpeng Qi, Bo Song, Xin Yang. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size[J]. J. Mater. Sci. Technol., 2021, 77: 90-99.
Group number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
P | 0.03 | 0.10 | 0.24 | 0.40 | 0.60 | 0.87 | 0.94 | 0.99 |
Grain size (nm) | 3.50 | 5.42 | 7.59 | 9.45 | 11.83 | 15.39 | 17.23 | 20.05 |
Table 1. Mean grain size of various NiTi specimens.
Group number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
P | 0.03 | 0.10 | 0.24 | 0.40 | 0.60 | 0.87 | 0.94 | 0.99 |
Grain size (nm) | 3.50 | 5.42 | 7.59 | 9.45 | 11.83 | 15.39 | 17.23 | 20.05 |
Fig. 2. Initial configurations of the NiTi alloy with average grain size of 9.45 nm. The atoms are colored by (a) particle identifiers and (b) common neighbor analysis (CNA).
Average grain size (nm) | 3.50 | 5.42 | 7.59 | 9.54 | 11.83 | 15.39 | 17.23 | 20.05 | |
---|---|---|---|---|---|---|---|---|---|
Nucleation stage | Ts (ps) | 23.6 | 22.9 | 22.3 | 22.2 | 22.0 | 21.8 | 21.7 | 21.6 |
Te (ps) | 26.5 | 26.0 | 25.4 | 25.2 | 25.1 | 25.0 | 24.5 | 24.4 | |
Pn (GPa) | -17.3 | -17.4 | -17.4 | -17.4 | -17.4 | -17.4 | -17.4 | -17.4 | |
Growth stage | Ts (ps) | 26.5 | 26.0 | 25.4 | 25.2 | 25.1 | 25.0 | 24.5 | 24.4 |
Te (ps) | 38.0 | 36.5 | 35.8 | 35.5 | 35.0 | 34.4 | 33.7 | 33.5 | |
Pg (GPa) | -2.5 | -2.3 | -2.2 | -2.0 | -1.4 | -1.3 | -0.9 | -0.5 |
Table 2. Starting time (Ts), ending time (Te), and void nucleation and growth thresholds of the NiTi alloys.
Average grain size (nm) | 3.50 | 5.42 | 7.59 | 9.54 | 11.83 | 15.39 | 17.23 | 20.05 | |
---|---|---|---|---|---|---|---|---|---|
Nucleation stage | Ts (ps) | 23.6 | 22.9 | 22.3 | 22.2 | 22.0 | 21.8 | 21.7 | 21.6 |
Te (ps) | 26.5 | 26.0 | 25.4 | 25.2 | 25.1 | 25.0 | 24.5 | 24.4 | |
Pn (GPa) | -17.3 | -17.4 | -17.4 | -17.4 | -17.4 | -17.4 | -17.4 | -17.4 | |
Growth stage | Ts (ps) | 26.5 | 26.0 | 25.4 | 25.2 | 25.1 | 25.0 | 24.5 | 24.4 |
Te (ps) | 38.0 | 36.5 | 35.8 | 35.5 | 35.0 | 34.4 | 33.7 | 33.5 | |
Pg (GPa) | -2.5 | -2.3 | -2.2 | -2.0 | -1.4 | -1.3 | -0.9 | -0.5 |
Fig. 5. Stress-strain response combined with dynamic damage performance of the NiTi alloy with average grain size of 5.42 nm under triaxial tension. Void volume fraction and applied strain are shown at different stages during the loading. The purple parts in the inset figures represent surfaces of the voids.
Fig. 6. Stress-strain response combined with dynamic damage performance of the NiTi alloy with average grain size of 15.39 nm under triaxial tension. Void volume fraction and applied strain are shown at different stages during the loading. The purple parts in the inset figures represent surfaces of the voids.
Fig. 7. Stress-strain response combined with dynamic damage performance of the NiTi alloy with average grain size of 20.05 nm under triaxial tension. Void volume fraction and applied strain are shown at different stages during the loading. The purple parts in the inset figures represent surfaces of the voids.
Fig. 11. External snapshots of void distributions at 5.42 nm, 15.39 nm and 20.05 nm, respectively. Atoms of grains with different sizes were colored by particle identifiers.
Fig. 12. Cross-sectional snapshots of void distributions at 5.42 nm, 15.39 nm, and 20.05 nm, respectively. Atoms of grains with different sizes were colored by particle identifiers.
Average grain size (nm) | 3.50 | 5.42 | 7.59 | 9.54 | 11.83 | 15.39 | 17.23 | 20.05 | |
---|---|---|---|---|---|---|---|---|---|
Potential energy (106 eV) | Maximum | -9.146 | -9.194 | -9.248 | -9.284 | -9.302 | -9.326 | -9.328 | -9.330 |
Minimum | -9.581 | -9.637 | -9.701 | -9.753 | -9.798 | -9.839 | -9.861 | -9.884 | |
Difference | 0.435 | 0.443 | 0.453 | 0.469 | 0.496 | 0.513 | 0.533 | 0.554 |
Table 3. Characteristic values of potential energy during the void evolution.
Average grain size (nm) | 3.50 | 5.42 | 7.59 | 9.54 | 11.83 | 15.39 | 17.23 | 20.05 | |
---|---|---|---|---|---|---|---|---|---|
Potential energy (106 eV) | Maximum | -9.146 | -9.194 | -9.248 | -9.284 | -9.302 | -9.326 | -9.328 | -9.330 |
Minimum | -9.581 | -9.637 | -9.701 | -9.753 | -9.798 | -9.839 | -9.861 | -9.884 | |
Difference | 0.435 | 0.443 | 0.453 | 0.469 | 0.496 | 0.513 | 0.533 | 0.554 |
[1] |
W.H. Li, X.H. Yao, P.S. Branicio, X.Q. Zhang, N.B. Zhang, Acta Mater. 140 (2017) 274-289.
DOI URL |
[2] |
W.H. Lee, X.H. Yao, W.R. Jian, Q. Han, Comp. Mater. Sci. 98 (2015) 297-303.
DOI URL |
[3] |
X.Q. Shang, H.M. Zhang, Z.S. Cui, M.W. Fu, J.B. Shao, Int. J. Plasticity 125 (2020) 133-149.
DOI URL |
[4] | W. Predki, A. Knopik, B. Bauer, Mater. Sci. Eng. A 481 (2008) 598-601. |
[5] | S. Nemat-Nasser, J.Y. Choi, W.G. Guo, J.B. Isaacs, M. Taya, J. Eng. Mater. Technol. T ASME 127 (2005) 83-89. |
[6] |
J.C.F. Millett, N.K. Bourne, Mater. Sci. Eng. A 378 (2004) 138-142.
DOI URL |
[7] |
Y.L. Liao, C. Ye, D. Lin, S. Suslov, G.J. Cheng, J. Appl. Phys. 112 (2012) 033515.
DOI URL |
[8] |
Q.Y. Yin, X.Q. Wu, C.G. Huang, Philos. Mag. 97 (2017) 1311-1333.
DOI URL |
[9] |
Y. Liu, Y.L. Li, K.T. Ramesh, J.Va. Humbeeck, Scr. Mater. 41 (1999) 89-95.
DOI URL |
[10] |
M.M. Carroll, A.C. Holt, J. Appl. Phys. 43 (1972) 1626-1636.
DOI URL |
[11] |
J.R. Rice, D.M. Tracey, J. Mech. Phys. Solids 17 (1969) 201-217.
DOI URL |
[12] |
J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks, R.A. Lebensohn, J. Appl. Phys. 110 (2011) 033513.
DOI URL |
[13] |
J.Q. Zhang, F. Wang, Mech. Adv. Mater. Struc. 16 (2009) 522-535.
DOI URL |
[14] |
L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S.N. Luo, S. Greenfield, D. Byler, D. Paisley, K.J. McClellan, A. Koskelo, R. Dickerson, Scr. Mater. 63 (2010) 1065-1068.
DOI URL |
[15] |
T. Qiu, Y.N. Xiong, S.F. Xiao, X.F. Li, W.Y. Hu, H.Q. Deng, Comp. Mater. Sci. 137 (2017) 273-281.
DOI URL |
[16] |
T.T. Zhou, A.M. He, P. Wang, J.L. Shao, Comp. Mater. Sci. 162 (2019) 255-267.
DOI URL |
[17] |
S.J. Fensin, S.M. Valone, E.K. Cerreta, G.T. Gray, J. Appl. Phys. 112 (2012) 083529.
DOI URL |
[18] | L. He, F. Wang, X.G. Zeng, X. Yang, Z.P. Qi, Mech. Mater. 143 (2020) 1003343. |
[19] |
R. Krishna, J.M. van Baten, J. Phys. Chem. B 109 (2005) 6386-6396.
URL PMID |
[20] |
X. Yang, X.G. Zeng, L. Chen, Y. Guo, H.Y. Chen, F. Wang, Nucl. Instrum. Meth. B 436 (2018) 92-98.
DOI URL |
[21] |
A. Ahadi, Q.P. Sun, Acta Mater. 76 (2014) 186-197.
DOI URL |
[22] |
M.K. Kini, G. Dehrn, C. Kirchlechner, Acta Mater. 184 (2020) 120-131.
DOI URL |
[23] |
F. Wang, J.X. Shao, L.M. Keer, L. Li, J.Q. Zhang, Mater. Des. 75 (2015) 136-142.
DOI URL |
[24] |
X.B. Shi, L.S. Cui, D.Q. Jiang, C. Yu, F.M. Guo, M.Y. Yu, Y. Ren, Y.N. Liu, J. Mater. Sci. 49 (2014) 4643-4647.
DOI URL |
[25] | S. Plimpton, J. Comp. Phys. 117 (1995) 1-19. |
[26] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI URL |
[27] |
M.I. Baskes, Phys. Rev. B 46 (1992) 2727-2742.
DOI URL |
[28] |
K. Otsuka, X. Ren, Prog. Mater. Sci. 50 (2005) 511-678.
DOI URL |
[29] |
B.J. Lee, W.S. Ko, H.K. Kim, E.H. Kim, Calphad 34 (2010) 510-522.
DOI URL |
[30] |
E.T. Seppala, J. Belak, R.E. Rudd, Phys. Rev. B 69 (2004) 134101.
DOI URL |
[31] |
S. Rawat, M. Warrier, S. Chaturvedi, V.M. Chavan, Model. Simul. Mater. Sci. Eng. 19 (2011) 025007.
DOI URL |
[32] |
X. Yang, X.G. Zeng, J. Wang, J.B. Wang, F. Wang, J. Ding, Mech. Mater. 135 (2019) 98-113.
DOI URL |
[33] |
E.N. Hahn, M.A. Meyers, Mater. Sci. Eng. A 646 (2015) 101-134.
DOI URL |
[34] |
W.J. Chen, X.G. Zeng, L. Chen, X. Yang, F. Wang, Mech. Mater. 141 (2020) 103261.
DOI URL |
[35] |
A. Neogi, N. Mitra, R. Talreja, Compos. Part A 106 (2018) 52-58.
DOI URL |
[36] | A.E. Mayer, P.N. Mayer, Int. J. Mech. Sci. 157 (2019) 816-832. |
[37] | B.N. Singh, Philos. Mag. 29 (1974) 25-42. |
[38] |
S. Rawat, P.M. Raole, Comp. Mater. Sci. 154 (2018) 393-404.
DOI URL |
[39] |
J. Ding, Y. Tian, L.S. Wang, X. Huang, H.R. Zheng, K. Song, X.G. Zeng, Comp. Mater. Sci. 158 (2019) 76-87.
DOI URL |
[40] |
S. Rawat, M. Warrier, S. Chaturvedi, V.R. Ikkurthi, Pramana J. Phys. 83 (2014) 265-272.
DOI URL |
[41] |
M.L. Qi, S. Zhong, H.L. He, D. Fan, L. Zhao, Chin. Phys. B 22 (2013) 046203.
DOI URL |
[42] |
F.P. Yuan, X.L. Wu, Phys. Rev. B 86 (2012) 134108.
DOI URL |
[43] |
F.P. Yuan, L. Chen, P. Jiang, X.L. Wu, J. Appl. Phys. 115 (2014) 063509.
DOI URL |
[44] |
M. Lu, F. Wang, X.G. Zeng, W.J. Chen, J.Q. Zhang, Theor. Appl. Fract. Mech. 105 (2020) 102402.
DOI URL |
[45] |
J.Y. Li, X. Zang, W.H. Zhao, X.M. Zhang, J. Meas. Eng. 7 (2019) 96-106.
DOI URL |
[46] |
Y. Qiu, M.L. Young, X. Nie, Metall. Mater. Trans. A 46 (2015) 4661-4668.
DOI URL |
[1] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[2] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[3] | Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 173-182. |
[4] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[5] | Xumin Zhu, Congyang Gong, Yun-Fei Jia, Runzi Wang, Chengcheng Zhang, Yao Fu, Shan-Tung Tu, Xian-Cheng Zhang. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1607-1617. |
[6] | Shengyu Jiang, Ruihong Wang. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35(7): 1354-1363. |
[7] | Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites [J]. J. Mater. Sci. Technol., 2018, 34(9): 1580-1591. |
[8] | Yi-jun Li, Rui-dong Fu, Yan Li, Yan Peng, Hui-jie Liu. Tensile properties and fracture behavior of friction stir welded joints of Fe-32Mn-7Cr-1Mo-0.3N steel at cryogenic temperature [J]. J. Mater. Sci. Technol., 2018, 34(1): 157-162. |
[9] | Chen Jie, Bao Chonggao, Chen Wenhui, Zhang Li, Liu Jinling. Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents [J]. J. Mater. Sci. Technol., 2017, 33(7): 668-674. |
[10] | Li Shaolin, Qi Lehua, Zhang Ting, Zhou Jiming, Li Hejun. Microstructure and tensile behavior of 2D-Cf/AZ91D composites fabricated by liquid-solid extrusion and vacuum pressure infiltration [J]. J. Mater. Sci. Technol., 2017, 33(6): 541-546. |
[11] | Wang Guanglei, Sun Yuan, Wang Xinguang, Liu Jide, Liu Jinlai, Li Jinguo, Yu Jinjiang, Zhou Yizhou, Jin Tao, Sun Xudong, Sun Xiaofeng. Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature [J]. J. Mater. Sci. Technol., 2017, 33(10): 1219-1226. |
[12] | Hansong Zuo, Hejun Li, Lehua Qi, Songyi Zhong. Influence of Interfacial Bonding between Metal Droplets on Tensile Properties of 7075 Aluminum Billets by Additive Manufacturing Technique [J]. J. Mater. Sci. Technol., 2016, 32(5): 485-488. |
[13] | Je Jo Won,Ahn Hee-Jun,Hyoung Kim Jong,Kwon Dongil. Fracture Characteristics of Frit Bonding through In-Situ Nano-Indentation Testing [J]. J. Mater. Sci. Technol., 2016, 32(11): 1204-1210. |
[14] | Yunfei Xue LuWang Huanwu Cheng FuchiWang Haifeng Zhang AimingWang. Dynamic Tensile Property of Zr-based Metallic Glass/Porous W Phase Composite [J]. J Mater Sci Technol, 2010, 26(10): 908-913. |
[15] | Xuedong LIU Jingtang WANG State Key Lab.of RSA,Institute of Metal Research,Academia Sinica,Shenyang,110015,ChinaJie ZHU Jian JIANG International Centre for Materials Physics,Institute of Metal Research,Academia Sinica,Shenyang,110015,China. Interfacial Characteristics of Nanocrystalline FeMoSiB Alloys [J]. J Mater Sci Technol, 1993, 9(4): 268-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||