J. Mater. Sci. Technol. ›› 2021, Vol. 77: 82-89.DOI: 10.1016/j.jmst.2020.10.064
• Research Article • Previous Articles Next Articles
P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang(
)
Received:2020-09-09
Revised:2020-10-06
Accepted:2020-10-06
Published:2021-06-30
Online:2020-11-20
Contact:
H.P. Wang
About author:* E-mail address: hpwang@nwpu.edu.cn (H.P. Wang).P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang. Rapid Growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition[J]. J. Mater. Sci. Technol., 2021, 77: 82-89.
Fig. 1. Basic phase analyses of Ti50Ni50 alloys with different undercoolings: (a). the part of phase diagram for Ti-Ni system and a simple illustration solidification mechanism of Ti50Ni50 alloy under non-equilibrium condition; (b) XRD patterns versus undercoolings.
Fig. 2. The analyses of solidification kinetics forTi50Ni50 alloy: (a) the typical “temperature-time curve” with different undercoolings; (b) the average cooling rate when the liquid alloy solidify; (c) the recalescence degree (Δ Tr) during recalescence; (d) the growth velocity of the TiNi phase.
Fig. 3. The microstructures of Ti50Ni50 alloy with different undercoolings: (a) master alloy; (b) △ T = 80 K; (c) △ T = 127 K; (d) △ T = 236 K; (e) △ T = 317 K; (f) △ T = 350 K.
Fig. 5. The phase analyses of Ti50Ni50 alloy at △ T = 36 K: (a) the morphology taken from TEM; (b) the distribution of Ni element; (c) the distribution of Ti element; (d) the SAED pattern of TiNi phase; (e) the SAED pattern of Ti2Ni phase; (f) the SAED pattern of Ti phase.
Fig. 6. The phase analyses of Ti50Ni50 alloy at △ T = 317 K: (a) the morphology taken from TEM; (b) the distribution of Ni element; (c) the distribution of Ti element; (d) the SAED pattern of TiNi phase; (e) the SAED pattern of Ti phase.
| ΔT(K) | TiNi phase | α-Ti phase | Ti2 Ni phase | |||
|---|---|---|---|---|---|---|
| Ti (%) | Ni (%) | Ti (%) | Ni (%) | Ti (%) | Ni (%) | |
| 80 | 48.52 ± 0.48 | 51.48 ± 0.48 | 98.00 ± 0.45 | 2.00 ± 0.45 | 66.59 ± 0.52 | 33.41 ± 0.52 |
| 127 | 46.87 ± 0.62 | 53.13 ± 0.62 | 98.34 ± 0.66 | 1.66 ± 0.66 | 63.87 ± 0.38 | 36.13 ± 0.38 |
| 317 | 44.76 ± 0.47 | 55.24 ± 0.47 | 95.51 ± 0.42 | 4.49 ± 0.42 | ||
| 370 | 43.93 ± 0.49 | 56.07 ± 0.49 | 94.24 ± 0.62 | 5.76 ± 0.62 | ||
Table 1. The content of Ti and Ni elements in different phases(At least 5 points were tested for each data).
| ΔT(K) | TiNi phase | α-Ti phase | Ti2 Ni phase | |||
|---|---|---|---|---|---|---|
| Ti (%) | Ni (%) | Ti (%) | Ni (%) | Ti (%) | Ni (%) | |
| 80 | 48.52 ± 0.48 | 51.48 ± 0.48 | 98.00 ± 0.45 | 2.00 ± 0.45 | 66.59 ± 0.52 | 33.41 ± 0.52 |
| 127 | 46.87 ± 0.62 | 53.13 ± 0.62 | 98.34 ± 0.66 | 1.66 ± 0.66 | 63.87 ± 0.38 | 36.13 ± 0.38 |
| 317 | 44.76 ± 0.47 | 55.24 ± 0.47 | 95.51 ± 0.42 | 4.49 ± 0.42 | ||
| 370 | 43.93 ± 0.49 | 56.07 ± 0.49 | 94.24 ± 0.62 | 5.76 ± 0.62 | ||
| [1] |
A.R. Kilmametov, D.V. Gunderov, R.Z. Valiev, A.G. Balogh, H. Hahn, Scripta Mater. 59 (2008) 1027-1030.
DOI URL |
| [2] | D. Gunderov, A. Lukyanov, E. Prokofiev, A. Kilmametov, V. Pushin, R. Valiev, Mater. Sci. E.: A 503 (2009) 75-77. |
| [3] |
H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev, J. Mater. Sci. Technol. 35 (2019) 2156-2162.
DOI URL |
| [4] |
Y.W. Kim, Intermetallics 62 (2015) 56-59.
DOI URL |
| [5] |
H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, M. Kohl, Acta Mater. 81 (2014) 9-20.
DOI URL |
| [6] |
A. Kumar, S.K. Sharma, S. Bysakh, S.V. Kamat, S. Mohan, J. Mater. Sci. Technol. 26 (2010) 961-966.
DOI URL |
| [7] |
S.W. Kim, Y.M. Jeon, C.H. Park, J.H. Kim, D.H. Kim, J.T. Yeom, J. Alloys Compd. 580 (2013) 5-9.
DOI URL |
| [8] |
Y. Wang, X.Q. Cai, Z.W. Yang, D.P. Wang, X.G. Liu, Y.C. Liu, J. Mater. Sci. Technol. 33 (2017) 682-689.
DOI URL |
| [9] |
B.Karbakhs. Ravari, S. Farjami, M. Nishida, Acta Mater. 69 (2014) 17-29.
DOI URL |
| [10] |
N. Resnina, S. Belayev, A. Voronkov, Intermetallics 32 (2013) 81-89.
DOI URL |
| [11] |
F. Alijani, R. Amini, M. Ghaffari, M. Alizadeh, A.K. Okyay, Mater. Des. 55 (2014) 373-380.
DOI URL |
| [12] |
W.C. Kim, Y.J. Kim, Y.S. Kim, J.I. Hyun, S.H. Hong, W.T. Kim, D.H. Kim, Acta Mater. 173 (2019) 130-141.
DOI URL |
| [13] |
K.M. Kim, J.T. Yeom, H.S. Lee, S.Y. Yoon, J.H. Kim, Thermochim. Acta 583 (2014) 1-7.
DOI URL |
| [14] |
M.L. Johnson, P.C. Gibbons, A.J. Vogt, K.F. Kelton, J. Alloys Compd. 725 (2017) 1217-1222.
DOI URL |
| [15] |
D.G. Quirinale, G.E. Rustan, S.R. Wilson, M.J. Kramer, A.I. Goldman, M.I. Mendelev, J. Phys. Condens. Matter 27 (2015), 085004.
DOI URL |
| [16] |
A.A. Bogno, P.D. Khatibi, H. Henein, C.A. Gandin, Metall. Mater. Trans. A 47 (2016) 4606-4615.
DOI URL |
| [17] |
S. Amore, J. Brillo, I. Egry, R. Novakovic, Appl. Surf. Sci. 257 (2011) 7739-7745.
DOI URL |
| [18] | H. Wang, P. Lü, X. Cai, B. Zhai, J. Zhao, B. Wei, Mater. Sci. E.: A 772 (2020), 138660. |
| [19] |
J. Brillo, A.I. Pommrich, A. Meyer, Phys. Rev. Lett. 107 (2011), 165902.
DOI URL |
| [20] |
N.A. Mauro, A.J. Vogt, M.L. Johnson, J.C. Bendert, K.F. Kelton, Appl. Phys. Lett. 103 (2013), 021904.
DOI URL |
| [21] |
L.B. Skinner, C.J. Benmore, J.K. Weber, S. Tumber, L. Lazareva, J. Neuefeind, L. Santodonato, J. Du, J.B. Parise, J. Phys. Chem. B 116 (2012) 13439-13447.
DOI URL PMID |
| [22] |
Y. Ohishi, F. Kargl, F. Nakamori, H. Muta, K. Kurosaki, S. Yamanaka, J. Nucl. Mater. 487 (2017) 121-127.
DOI URL |
| [23] | C.J. Benmore, J.K.R. Weber, Phys. Rev. X 1 (2011) |
| [24] |
S. Baer, M.A. Andrade, C. Esen, J.C. Adamowski, G. Schweiger, A. Ostendorf, Rev. Sci. Instrum. 82 (2011), 105111.
DOI URL |
| [25] |
R.V.S. Prasad, G. Phanikumar, Intermetallics 19 (2011) 1705-1710.
DOI URL |
| [26] |
S. Azumo, H. Yonemura, K. Nagayama, Mater. Trans. 49 (2008) 1415-1418.
DOI URL |
| [27] | H.P. Wang, M.X. Li, P.F. Zou, X. Cai, L. Hu, B. Wei, Phys. Rev. E 98 (2018) 3106-3118. |
| [28] | P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM International, USA, 1991, pp.342-355. |
| [29] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
| [30] |
Y. Pang, Q. Li, Int. J. Hydrogen Energ. 41 (2016) 18072-18087.
DOI URL |
| [31] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloys 7 (2019) 58-71.
DOI URL |
| [1] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
| [2] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
| [3] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
| [4] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
| [5] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
| [6] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
| [7] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
| [8] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
| [9] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
| [10] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
| [11] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
| [12] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
| [13] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
| [14] | Zhipeng Long, Qiuyue Jiang, Jiantao Wang, Long Hou, Xing Yu, Yves Fautrelle, Zhongming Ren, Xi Li. Nucleation kinetics of paramagnetic and diamagnetic metal melts under a high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 165-170. |
| [15] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
