Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 157-162    DOI: 10.1016/j.jmst.2017.11.034
Orginal Article Current Issue | Archive | Adv Search |
Tensile properties and fracture behavior of friction stir welded joints of Fe-32Mn-7Cr-1Mo-0.3N steel at cryogenic temperature
Yi-jun Liac, Rui-dong Fua*(), Yan Lia, Yan Pengc, Hui-jie Liub
a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
b State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150000, China
c College of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 550 °C for 30 min can effectively inhibit the cryogenic intergranular brittleness of the post-weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.

Key words:  High nitrogen steel      Friction stir welding      Post-weld heat treatment      Tensile properties      Fracture behavior      Cryogenic     
Received:  04 April 2017     
Corresponding Authors:  Fu Rui-dong     E-mail:  rdfu@ysu.edu.cn

Cite this article: 

Yi-jun Li, Rui-dong Fu, Yan Li, Yan Peng, Hui-jie Liu. Tensile properties and fracture behavior of friction stir welded joints of Fe-32Mn-7Cr-1Mo-0.3N steel at cryogenic temperature. J. Mater. Sci. Technol., 2018, 34(1): 157-162.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.11.034     OR     https://www.jmst.org/EN/Y2018/V34/I1/157

Fig. 1.  Schematic of the tensile test specimen.
Fig. 2.  Microstructures of as-welded and PWWT joints: (a) cross-section of as-welded joint; (b) BM in as-welded joint; (c) HAZ in as-welded joint; (d) NZ in as-welded joint; (e) SEM image of BS in as-welded joint; (f) cross-section of PWWT joint; (g) BM in PWWT joint; (h) NZ in PWWT joint; (i) HAZ and BM in PWWT joint; (j) OIM map of HAZ in PWWT joint.
Fe Mn Cr Mo W
1 41.81 20.58 7.08 0.71 26.66
2 59.74 29.5 6.62 0.69 -
Table 1  Chemical composition of the BS (in wt%).
Fig. 3.  Cryogenic engineering stress-strain curves of FSW joint and BM under different treatment conditions.
YS (MPa) UTS (MPa) UE (%)
BM-W 673(+13 -5) 864(+14 -5) 3(+1 -0)
BM-W-A 682(+8 -4) 1103(+7 -4) 36(+2 -1)
as-welded joint 884(+3 -7) 1009(+3 -7) 2(+0 -0)
PWWT joint 655(+7 -10) 834(+6 -9) 6(+1 -1)
annealed joint 650(+5 -4) 960(+5 -4) 34(+2 -1)
Table 2  Tensile properties of FSW joints and BM at cryogenic temperatures.
Fig. 4.  Fe-32 Mn steel specimens after tensile fracture at cryogenic temperature: (a) as-welded joint; (b) PWWT joint; (c) BM-W; (d) BM-W-A; and (e) annealed joint.
Fig. 5.  OM images showing fracture location at (a) low magnification and (b)-(c) high magnification.
Fig. 6.  SEM images showing cryogenic tensile fractographs of as-welded joint.
Fig. 7.  SEM images showing cryogenic tensile fractographs of BM-W and PWWT joint: (a)-(b) BM-W; and (c)-(d) PWWT joint.
Fig. 8.  SEM images showing cryogenic tensile fractographs of BM-W-A and annealed joint: (a)-(c) BM-W-A; and (d)-(i) annealed joint.
[1] J.D. Bolton, E.R. Petty, G.B. Allen, Metall. Trans. 2(1971) 2915-2923.
[2] R.D. Fu, L. Qiu, T.S. Wang, Mater. Charact. 55(2005) 355-361.
[3] H. Baba, Y. Katada, Corros. Sci. 48(2006) 2510-2524.
[4] L. Qiu, R. Fu, C. Wang, Y. Zheng, J. Mater. Sci.Technol. 22(2006) 629-633.
[5] F. Lu, P. Yang, L. Meng, F. Cui, H. Ding, J. Mater. Sci.Technol. 27(2011)257-265.
[6] R. Mohammed, G. Madhusudhan Reddy, K. Srinivasa Rao, Defence Technol. 11(2015) 237-243.
[7] L. Woo, T. Horinouchi, Y. Miyano, J. Steel Relat.Mater. 2(2004) 187-196.
[8] I. Woo, Y. Kikuchi, ISIJ Int. 42(2002) 1334-1343.
[9] Y.C. Chen, H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K.Matsubayashi, Y. Michishita, Y. Fujiya, J. Katoh, J. Nucl. Mater. 420(2012)497-500.
[10] Y. Miyano, H. Fujii, Y. Sun, Y. Katada, S. Kuroda, O. Kamiya, Mater. Sci. Eng. A.528(2011) 2917-2921.
[11] S.D. Ji, Y.Y. Jin, Y.M. Yue, S.S. Gao, Y.X. Huang, L. Wang, J. Mater. Sci.Technol.29(2013) 955-960.
[12] S. Babu, G.D. Ram, P.V. Venkitakrishnan, G.M. Reddy, K.P. Rao, J. Mater. Sci.Technol. 28(2012) 414-426.
[13] Y.J. Li, R.D. Fu, D.X. Du, L. Jing, D.L. Sang, X.Y. Zhang, Sci. Technol. Weld. Join. 19(2014) 588-594.
[14] S. Mironov, Y.S. Sato, H. Kokawa, Acta Mater. 57(2009) 4519-4528.
[15] D. Du, R. Fu, Y. Li, L. Jing, Y. Ren, K. Yang, Mater. Sci. Eng. A 616 (2014)246-251.
[16] D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, W. Wang, K. Yang, Mater. Des. 64(2014)355-359.
[17] M. Jafarzadegan, A. Abdollah-Zadeh, A.H. Feng, T. Saeid, J. Shen, H. Assadi, J.Mater. Sci.Technol. 29(2013) 367-372.
[18] W.S. Chang, S.R. Rajesh, C.K. Chun, H.J. Kim, J. Mater. Sci.Technol. 27(2011)199-204.
[19] S.H.C.Park, Trans Tech Publ. 539(2007) 3757-3762.
[20] S.H.C.Park, Y.S. Sato, H. Kokawa, K.Okamoto, S. Hirano, M. Inagaki, ScriptaMater. 49(2003) 1175-1180.
[21] S.H.C.Park, Y.S. Sato, H. Kokawa, K.Okamoto, S. Hirano, M. Inagaki, Sci.Technol. Weld. Join. 10(2005) 550-556.
[22] D. Du, R. Fu, Y. Li, L. Jing, J. Wang, Y. Ren, Mater. Sci. Eng. A 640 (2015)190-194.
[23] Y.J. Li, R.D. Fu, D.X. Du, L. Jing, D.L. Sang, Y.P. Wang, Sci. Technol. Weld. Join. 20(2015) 229-235.
[24] M. Zhang, Int. J. Pres. Ves. Pip. 1(1997) 33-41.
[25] W. Tang, Y.W. Shi, Eng. Fract. Mech. 51(1995) 649-659.
[26] Y. Tomota, M. Strum, J.W. Morris, Metall. Trans. A 17 (1986)537-547.
[27] V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, Y.N. Petrov,Mater. Sci. Eng. A 271 (1999) 14-21.
[1] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[2] Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. 材料科学与技术, 2020, 44(0): 24-30.
[3] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[4] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[5] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[6] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[7] Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. 材料科学与技术, 2020, 39(0): 173-182.
[8] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[9] S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel[J]. 材料科学与技术, 2020, 37(0): 161-172.
[10] Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification[J]. 材料科学与技术, 2020, 38(0): 19-27.
[11] B. Zhou, D. Wu, R.S. Chen, En-hou Han. Enhanced tensile properties in a Mg-6Gd-3Y-0.5Zr alloy due to hot isostatic pressing (HIP)[J]. 材料科学与技术, 2019, 35(9): 1860-1868.
[12] Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding[J]. 材料科学与技术, 2019, 35(7): 1261-1269.
[13] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[14] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method[J]. 材料科学与技术, 2019, 35(7): 1412-1421.
[15] Lingyang Yuan, Liming Peng, Jingyu Han, Baoliang Liu, Yujuan Wu, Juan Chen. Effect of Cu addition on microstructures and tensile properties of high-pressure die-casting Al-5.5Mg-0.7Mn alloy[J]. 材料科学与技术, 2019, 35(6): 1017-1026.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.