J. Mater. Sci. Technol. ›› 2022, Vol. 110: 187-197.DOI: 10.1016/j.jmst.2021.10.012
• Research Article • Previous Articles Next Articles
Zhe Shena,b,c, Zhongze Lina,b,c, Peijian Shia,b,c, Jiale Zhua,b,c, Tianxiang Zhenga,b,c, Biao Dinga,b,c,*(), Yifeng Guoa,b,c,*(
), Yunbo Zhonga,b,c,*(
)
Received:
2021-06-30
Revised:
2021-09-05
Accepted:
2021-10-07
Published:
2021-11-26
Online:
2021-11-26
Contact:
Biao Ding,Yifeng Guo,Yunbo Zhong
About author:
yunboz@shu.edu.cn (Y. Zhong).Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment[J]. J. Mater. Sci. Technol., 2022, 110: 187-197.
Fig. 2. Experimental device and the cross-sectional microstructure of Cu-Cr-Zr alloy under different conditions. (a) Schematic illustration of the CEF and aging process; (b) as-cast; (c) continuously extruded; (d) aged.
Fig. 3. Misorientation distributions of grain/subgrain boundaries in the Cu-Cr-Zr alloy under different conditions. (a) As-cast; (b) continuously extruded; (c) aged for 3 h.
Fig. 4. The GOS maps of the extruded and aged specimens. (a) Extruded; (b) the microstructure with the GOS value between 0°-1° in the extruded specimen; (c) aged; (d) the microstructure with the GOS value between 0°-1° in the aged specimen.
Fig. 6. Friction behavior of all processed specimens: (a) friction coefficient curves; (b) average friction coefficient; (c) weight loss; (d) wear rate.
Fig. 7. Wear resistance of all processed specimens: (a) 3D profilometric images of wear tracks; (b) wear track profiles; (c) width and depth of wear track.
Fig. 9. Bright- and dark-field TEM images of the specimens processed by the CEF and subsequent aging: (a, b) extruded specimen; (c, d) Aged specimen. The insets are the corresponding selected area electron diffraction (SAED) patterns.
Fig. 10. A high-resolution TEM image of the Cr precipitate in the aged specimen: (a) Cr precipitate in the matrix and the inset shows the FFT image along a [111] zone axis of Cr; (b) EDS of the area in (a).
Fig. 11. Strengthening mechanism of Cu-Cr-Zr alloy. (a) Schematic illustration of the architected structure by the CEF and subsequent aging treatment; (b) quantification of strengthening contributions.
Fig. 12. SEM images of subsurface morphologies of all processed specimens: (a) as-cast specimen; (b) extruded specimen; (c) aged specimen; (d) the thicknesses of the mechanical mixing layer and plastically deformed layer.
Fig. 13. Subsurface microhardness measured by nanoindentation: (a) SEM image of the subsurface of as-cast specimen; (b) as-cast specimen; (c) extruded specimen; (d) aged specimen.
Fig. 14. Intrinsic material parameters of all processed specimens measured by nanoindentation: (a) load-displacement curves; (b) required load for achieving an indentation depth of 1000 nm; (c) microhardness and reduced elastic modulus; (d) H/Er and H3/Er2.
[1] |
Q. Liu, X. Zhang, Y. Ge, J. Wang, J.Z. Cui, Metall. Mater. Trans. A 37 (2006) 3233-3238.
DOI URL |
[2] |
A. Vinogradov, T. Ishida, K. Kitagawa, V.I. Kopylov, Acta Mater 53 (2005) 2181-2192.
DOI URL |
[3] |
A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov, Acta Mater 50 (2002) 1639-1651.
DOI URL |
[4] |
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103-189.
DOI URL |
[5] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207.
DOI URL |
[6] |
R. Valiev, Nat. Mater. 3 (2004) 511.
DOI URL |
[7] | L. Winter, K. Hockauf, S. Winter, T. Lampke, Mater. Sci. Eng. A 795 (2020) 140014. |
[8] | W. Bednarczyk, J. Kawałko, B. Rutkowski, M. Watroba, N. Gao, M.J. Starink, P. Bała, T.G. Langdon, Acta Mater. 207 (2021) 116667. |
[9] | S. Jiang, R.L. Peng, Z. Hegedüs, T. Gnäupel-Herold, J.J. Moverare, U. Lienert, X. Zhao F.Fang, L. Zuo, N. Jia, Acta Mater. 205 (2020) 116546. |
[10] | B.B. Dong, X. Che, Z.M. Zhang, J.M. Yu, M. Meng, J. Alloy. Compd. 853 (2021) 157066. |
[11] |
Y.C. Wan, B. Tang, Y.H. Gao, L.L. Tang, X.Y. Guo, Y.H. Zhao, Acta Mater. 200 (2020) 274-286.
DOI URL |
[12] | L.L. Guo, J.Q. Wang, X.B. Yun, Z.C. Chen, Mater. Sci. Eng. A 802 (2021) 140670. |
[13] |
K. Abib, J. A.M. Balanos, B. Alili, D. Bradai, Mater. Charact. 112 (2016) 252-258.
DOI URL |
[14] |
P.K. Jayakumar, K. Balasubramanian, G.R. Tagore, Mater. Sci. Eng. A 538 (2012) 7-13.
DOI URL |
[15] |
G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina, S.V. Dobatkin, Mater. Sci. Eng. A 649 (2016) 114-122.
DOI URL |
[16] |
G. Purcek, H. Yanar, D.V. Shangina, M. Demirtas, N.R. Bochvar, S.V. Dobatkin, J. Alloy. Compd. 742 (2018) 325-333.
DOI URL |
[17] |
D.V. Shangina, N.R. Bochvar, M.V. Gorshenkov, H. Yanar, G. Purcek, S.V. Do- batkin, Mater. Sci. Eng. A 650 (2016) 63-66.
DOI URL |
[18] |
N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, N. Tsuji, Scr. Mater. 60 (2009) 590-593.
DOI URL |
[19] | C. Etherington, J. Manuf. Sci. Eng. 96 (1974) 893-900. |
[20] |
Y. Yuan, C. Dai, Z. Li, G. Yang, Y. Liu, Z. Xiao, J. Mater. Res. 30 (2015) 2783-2791.
DOI URL |
[21] |
A. Hadadzadeh, F. Mokdad, M.A. Wells, D.L. Chen, Mater. Sci. Eng. A 709 (2017) 285-289.
DOI URL |
[22] |
Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.J. Ma, R.D.K. Misra, Mater. Sci. Eng. A 585 (2013) 71-85.
DOI URL |
[23] |
X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, S.W. Lee, J.T. Yeom, X.J. Mi, J. Alloy. Compd. 693 (2017) 426-431.
DOI URL |
[24] |
D.A. Rigney, Wear 175 (1994) 63-69.
DOI URL |
[25] |
S. Zhang, W. Hu, R. Berghammer, G. Gottstein, Acta Mater 58 (2010) 6695-6705.
DOI URL |
[26] |
N.N. Liang, J.Z. Liu, S.C. Lin, Y. Wang, J.T. Wang, Y.H. Zhao, Y.T. Zhu, J. Alloy. Compd. 735 (2017) 1389-1394.
DOI URL |
[27] |
A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Mater. Sci. Eng. A 532 (2012) 139-145.
DOI URL |
[28] |
M.A. Abdlstaar, E.A. El-Danaf, N.S. Waluyo, L. Wagner, Mater. Sci. Eng. A 565 (2013) 351-358.
DOI URL |
[29] |
N. Kamikawa, X.X. Huang, N. Tsuji, N. Hansen, Acta Mater. 57 (2009) 4198-4208.
DOI URL |
[30] | J.Z. Li, H. Ding, B.M. Li, W.L. Gao, J. Bai, G. Sha, Mater. Sci. Eng. A 802 (2021) 140628. |
[31] |
Q. Lei, Z. Xiao, W.P. Hu, B. Derby, L. Zhou, Mater. Sci. Eng. A 697 (2017) 37-47.
DOI URL |
[32] | P.H.F. Oliveira, D. C.C. Magalhães, M.T. Izumi, O.M. Cintho, A.M. Kliauga, V.L. Sordi, Mater. Sci. Eng. A 813 (2021) 141154. |
[33] |
J.S. Chen, J.F. Wang, X.P. Xiao, H. Wang, H.M. Chen, B. Yang, Mater. Sci. Eng. A 756 (2019) 464-473.
DOI URL |
[34] |
A. Chbihi, X. Sauvage, D. Blavette, Acta Mater 60 (2012) 4575-4585.
DOI URL |
[35] |
H.T. Jeong, W.J. Kim, J. Mater. Sci. Technol. 71 (2021) 228-240.
DOI |
[36] |
Z.F. Hao, G.L. Xie, X.H. Liu, Q. Tan, R. Wang, J. Mater. Sci. Technol. 98 (2022) 1-13.
DOI URL |
[37] |
A.P. Zhilyaev, I. Shakhova, A. Morozova, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng. A 654 (2016) 131-142.
DOI URL |
[38] |
Z. Zribi, H.H. Ktari, F. Herbst, V. Optasanu, N. Njah, Mater. Charact. 153 (2019) 190-198.
DOI URL |
[39] |
E. Aydogan, O. Anderoglu, S.A. Maloy, V. Livescu, G.T. Gray III, S. Perez-Bergquist, D.J. Williams, Mater. Sci. Eng. 651 (2016) 75-82.
DOI URL |
[40] |
L. Tian, I. Anderson, T. Riedemann, A.J.A.M. Russell, Acta Mater 77 (2014) 151-161.
DOI URL |
[41] |
B. Song, X.L. Yi, Z.Y. Liu, J. Wang, J.G. Zhao, P.Y. Ying, J. Alloy. Compd. 764 (2018) 62-72.
DOI URL |
[42] |
Y.J. Ban, Y.F. Geng, J.R. Hou, Y. Zhang, M. Zhou, Y.L. Jia, B.H. Tian, Y. Liu, X. Li, A.A. Volinsky, J. Mater. Sci. Technol. 93 (2021) 1-6.
DOI URL |
[43] |
Y.P. Li, Z. Xiao, Z. Li, Z.Y. Zhou, Z.Q. Yang, Q. Lei, J. Alloy. Compd. 723 (2017) 1162-1170.
DOI URL |
[44] |
J.P. Moore, R.K. Williams, R.S. Graves, J. Appl. Phys. 48 (1977) 610-617.
DOI URL |
[45] |
W. Zeng, J.W. Xie, D.S. Zhou, Z.Q. Fu, D.L. Zhang, E.J. Lavernia, J. Alloy. Compd. 745 (2018) 55-62.
DOI URL |
[46] |
Z.S. Basinski, J.S. Dugdale, A. Howie, Philos. Mag. 8 (1963) 1989-1997.
DOI URL |
[47] |
S.H. Pan, Z.Y. Guan, G.C. Yao, C.Z. Cao, X.C. Li, Curr. Appl. Phys. 19 (2019) 452-457.
DOI URL |
[48] |
A. Leyland, A. Matthews, Wear 246 (2000) 1-11.
DOI URL |
[49] |
W.Y. Ni, Y.T. Cheng, M.J. Lukitsch, A.M. Weiner, L.C. Lev, D.S. Grummon, Appl. Phys. Lett. 85 (2004) 4028-4030.
DOI URL |
[50] |
A. Ataee, Y.C. Li, C. Wen, Acta Biomater. 97 (2019) 587-596.
DOI URL |
[51] |
S. Abdi, M.S. Khoshkhoo, O. Shuleshova, M. Bönisch, M. Calin, L. Schultz, J. Eck- ert, M.D. Baró, J. Sort, A. Gebert, Intermetallics 46 (2014) 156-163.
DOI URL |
[52] |
S. Ehtemam-Haghighi, G.H. Cao, L.C. Zhang, J. Alloy. Compd. 692 (2017) 892-897.
DOI URL |
[53] |
J. Xu, G.D. Wang, X.L. Lu, L.L. Liu, P. Munroe, Z.H. Xie, Ceram. Int. 40 (2014) 8621-8630.
DOI URL |
[1] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[2] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[3] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[4] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[5] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[6] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[7] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[8] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[9] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[10] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[11] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[12] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[13] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[14] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[15] | Guo Fei, Huang Weijiu, Yang Xusheng, Dong Haipeng, Yu Hang, Chen Qiuyu, Hu Li, Jiang Luyao. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||