J. Mater. Sci. Technol. ›› 2022, Vol. 110: 198-209.DOI: 10.1016/j.jmst.2021.09.035
• Research Article • Previous Articles Next Articles
Fei Guoa, Weijiu Huangb,*(), Xusheng Yangb, Haipeng Dongc, Hang Yua, Qiuyu Chena, Li Hua, Luyao Jianga
Received:
2021-08-05
Revised:
2021-08-28
Accepted:
2021-09-10
Published:
2021-11-26
Online:
2021-11-26
Contact:
Weijiu Huang
About author:
* E-mail address: huangweijiu@cqut.edu.cn (W. Huang).Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process[J]. J. Mater. Sci. Technol., 2022, 110: 198-209.
Sample | Cu | Li | Zn | Mg | Mn | Zr | Fe | Si | Al |
---|---|---|---|---|---|---|---|---|---|
AA2099 | 2.78 | 1.80 | 0.67 | 0.30 | 0.36 | 0.09 | 0.06 | 0.03 | Bal. |
Table 1. Chemical content of the alloy used in this study (wt.%).
Sample | Cu | Li | Zn | Mg | Mn | Zr | Fe | Si | Al |
---|---|---|---|---|---|---|---|---|---|
AA2099 | 2.78 | 1.80 | 0.67 | 0.30 | 0.36 | 0.09 | 0.06 | 0.03 | Bal. |
Group | Sample | Heating stage Ⅰ | Holding stage | Heating stage Ⅱ | |||
---|---|---|---|---|---|---|---|
T (°C) | Time (min) | T (°C) | Time (min) | T (°C) | Time (min) | ||
Ⅰ | 420-F10m | 420 IF* | 10 | ||||
Ⅰ | 420-25m | 25→420 | 25 | ||||
Ⅰ | 420-3h | 25→420 | 180 | ||||
Ⅱ | 150-3h | 25→150 | 8 | 150 | 180 | 150→420 | 17 |
Ⅱ | 190-30m | 25→190 | 11 | 190 | 30 | 190→420 | 14 |
Ⅱ | 250-20m | 25→250 | 14 | 150 | 180 | 250→420 | 11 |
Table 2. Preheating schedules of the samples before hot rolling.
Group | Sample | Heating stage Ⅰ | Holding stage | Heating stage Ⅱ | |||
---|---|---|---|---|---|---|---|
T (°C) | Time (min) | T (°C) | Time (min) | T (°C) | Time (min) | ||
Ⅰ | 420-F10m | 420 IF* | 10 | ||||
Ⅰ | 420-25m | 25→420 | 25 | ||||
Ⅰ | 420-3h | 25→420 | 180 | ||||
Ⅱ | 150-3h | 25→150 | 8 | 150 | 180 | 150→420 | 17 |
Ⅱ | 190-30m | 25→190 | 11 | 190 | 30 | 190→420 | 14 |
Ⅱ | 250-20m | 25→250 | 14 | 150 | 180 | 250→420 | 11 |
Fig. 3. (a) Strain-stress curves of the preheated samples, comparison of the (b) yield stress and the ratio of yield stress to ultimate tensile stress, (c) ultimate tensile stress and (d) microhardness prior to rolling (PR) and after rolling (AR).
Fig. 6. Microstructure of preheated 420-25m sample: (a) BF image, (b) STEM-HADDF of the same region of (a), (c) core-shell structure phase, (d) DF image obtained at superlattice spot of 1/2{200}Al, (e) HRTEM of the core-shell structure phase highlighted δ’ and β’ phase, (f) FFT pattern of the region in (a) and (g) FFT pattern of the region in (e).
Fig. 7. Microstructure of preheated 420-F10m sample: (a) BF image, (b) STEM-HADDF image, (c) DF image obtained at the spot of 1/2{200}Al. Microstructure of preheated 420-3h sample: (d) BF image with SAED, (e) STEM-HADDF image, (f) HRTEM of a T2 phase with (g) the FFT pattern, (h) DF image obtained at the spot of 1/2{200}Al and (i) HRTEM of a β’ phase.
Fig. 8. Microstructure of preheated 150-3h sample: (a) BF image, (b) STEM-HADDF image, (c) HRTEM shows the details of T1 phases, (d) DF image obtained at the spot of 1/2{200}Al with SAED of the same region, (e) BF of the region contains T1 phase clusters and (f) DF of the same region in (e) with δ’ phase highlighted.
Fig. 9. Microstructure of preheated 190-30m sample: (a) STEM-HADDF image, (b) BF image with SAED, (c) DF image obtained at the spot of 1/2{200}Al and (d) HRTEM highlighted nano-size δ’ phase with FFT pattern.
Sample | Precipitates | Main texture | Microstructure | Mechanical properties |
---|---|---|---|---|
420-F10m | T1(low density) | Bs | - | Medium strength |
420-25m | δ', bubble δ', T1 | Bs, Cu, S | Shear bands | High strength |
420-3h | T2 | Cu | - | Low strength |
150-3h | T1, a few δ' | Cu | - | Low strength |
190-30m | T1, δ' | Bs, S | a few shear bands | High strength |
250-20m | T1, T2 | S | - | Medium strength |
Table 3. Summary of the precipitates, texture, microstructure and strength of the as-rolled samples.
Sample | Precipitates | Main texture | Microstructure | Mechanical properties |
---|---|---|---|---|
420-F10m | T1(low density) | Bs | - | Medium strength |
420-25m | δ', bubble δ', T1 | Bs, Cu, S | Shear bands | High strength |
420-3h | T2 | Cu | - | Low strength |
150-3h | T1, a few δ' | Cu | - | Low strength |
190-30m | T1, δ' | Bs, S | a few shear bands | High strength |
250-20m | T1, T2 | S | - | Medium strength |
Fig. 13. Microstructure of the hot-rolled 420-25m sample: (a) BF image of the slip bands marked by yellow arrows and (b, c) high magnification image of the slip bands with a slight tilt of the incident beam.
Fig. 14. Schematic figures of the distribution of the precipitates with various slip planes in the aluminum alloys: (a) T1 phase and (b) sphere δ’ phase.
[1] |
Y. Lin, Z.Q. Zheng, S.C. Li, X. Kong, Y. Han, Mater. Charact. 84 (2013) 88-99.
DOI URL |
[2] | N.E. Prasad, A .A. Gokhale R. J.H. Wanhill, Aluminum-Lithium Alloys: Processing, Properties, and Applications, Elsevier, Butterworth-Heinemann, Oxford, 2014. |
[3] |
A. Abd El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, D. Chen, J. Adv. Res. 10 (2018) 49-67.
DOI PMID |
[4] | T. Dorin, A. Vahid, J. Lamb, in: R.N. Lumley (Eds.), Fundamentals of Aluminium Metallurgy, Woodhead Publishing, Cambridge, 2018, pp. 387-438. |
[5] |
S.Y. Li, F.W. Sun, H. Li, Acta Mater 58 (2010) 1317-1331.
DOI URL |
[6] |
X.W. She, X.Q. Jiang, P.Q. Wang, B.B. Tang, K. Chen, Y.J. Liu, W.N. Cao, Trans. Nonferrous Met. Soc. China. 30 (2020) 1780-1789.
DOI URL |
[7] | T.K. Akopyan, Y.V. Gamin, S.P. Galkin, A. S. Prosviryakov, A. S. Aleshchenko, M.A. Noshin, A.N. Koshmin, A.V. Fomin, Mater. Sci. Eng. A 786 (2020) 139424. |
[8] |
M. Gorji, B. Berisha, N. Manopulo, P. Hora, J. Mater, Process. Technol. 232 (2016) 19-33.
DOI URL |
[9] |
J.Z. Chen, L. Zhen, W.Z. Shao, S.L. Dai, Y.X. Cui, Mater. Lett. 62 (2008) 88-90.
DOI URL |
[10] |
W.C. Liu, B. Radhakrishnan, Z. Li, J.G. Morris, Mater. Sci. Eng. A 472 (2008) 170-178.
DOI URL |
[11] |
K. Zhang, K. Marthinsen, B. Holmedal, T. Aukrust, A. Segatori, Mater. Sci. Eng. A 722 (2018) 20-29.
DOI URL |
[12] | Q.Y. Yang, Y.L. Zhou, Y.B. Tan, S. Xiang, M. Ma, F. Zhao, J. Alloys Compd. 884 (2021) 161135. |
[13] | A.H. Cottrell, R.J. Stokes, Proc. R. Soc. Lond. A 233 (1955) 17-34. |
[14] |
A. Chapuis, J.H. Driver, Acta Mater 59 (2011) 1986-1994.
DOI URL |
[15] | B. Gruber, I. Weißensteiner, T. Kremmer, F. Grabner, G. Falkinger, A. Schökel, F. Spieckermann, R. Schäublin, P.J. Uggowitzer, S. Pogatscher, Mater. Sci. Eng. A 795 (2020) 139935. |
[16] |
W.J. Poole, M. Militzer, M.A. Wells, Mater. Sci. Technol. 19 (2003) 1361-1368.
DOI URL |
[17] | B. Gruber, F. Grabner, G. Falkinger, A. Schökel, F. Spieckermann, P.J. Uggowitzer, S. Pogatscher, Mater. Des. 193 (2020) 108819. |
[18] |
D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, T. Epicier, Mater. Sci. Eng. A 528 (2011) 2718-2724.
DOI URL |
[19] |
C.X. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q.L. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[20] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[21] |
Y. Li, B. Hu, B. Liu, A. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
[22] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Tech- nol. 44 (2020) 171-190. |
[23] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[24] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[25] |
D.B. Williams, J.W. Edington, Met. Sci. 9 (1975) 529-532.
DOI URL |
[26] | M.D. Rossell, R. Erni, M. Asta, V. Radmilovic, U. Dahmen, Phys. Rev. B 80 (2009) 024110. |
[27] |
N.J. Kim, E.W. Lee, Acta Metall. Mater. 41 (1993) 941-948.
DOI URL |
[28] | Z. Xuejian, W. Hongwei, Y. Bing, Z. Chunming, W. Zunjie, J. Alloys Compd. 867 (2021) 159096. |
[29] |
W.A. Tayon, K.E. Nygren, R.E. Crooks, D.C. Pagan, Acta Mater 173 (2019) 231-241.
DOI URL |
[30] |
W. Lefebvre, N. Masquelier, J. Houard, R. Patte, H. Zapolsky, Scr. Mater. 70 (2014) 43-46.
DOI URL |
[31] | X.-Y. Wang, J.-T. Jiang, G.-A. Li, X.-M. Wang, J. Sun, L. Zhen, J. Alloys Compd. 815 (2020) 152469. |
[32] | X. Yang, W. Huang, X. Zhu, F. Guo, L. Hu, R. Zhang, Mater. Charact. 162 (2020) 110186. |
[33] |
F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom 160 (2010) 63-68.
DOI URL |
[34] |
X.Y. Zhang, W.X. Yang, R.S. Xiao, Mater. Des. 88 (2015) 446-450.
DOI URL |
[35] |
H. Paul, J.H. Driver, A. Tarasek, W. Wajda, M.M. Miszczyk, Mater. Sci. Eng. A 642 (2015) 167-180.
DOI URL |
[36] |
P. Frint, M. F.X. Wagner, Acta Mater 176 (2019) 306-317.
DOI URL |
[37] | H.P. Dong, F. Guo, W.J. Huang, X.S. Yang, X.H. Zhu, H. Li, L.Y. Jiang, Mater. Char- act. 177 (2021) 111155. |
[38] | F. Guo, H.P. Dong, W.J. Huang, X.S. Yang, L. Hu, M.D. Li, L.Y. Jiang, J. Alloys Compd. 864 (2021) 158293. |
[39] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[40] |
O. Engler, K. Lücke, Mater. Sci. Eng. A 148 (1991) 15-23.
DOI URL |
[41] |
Q.M. Luan, H. Xing, J. Zhang, J. Jiang, Acta Mater 183 (2020) 78-92.
DOI URL |
[42] |
A.A. Csontos, E.A. Starke, Int. J. Plast. 21 (2005) 1097-1118.
DOI URL |
[43] |
A. Deschamps, B. Decreus, F. De Geuser, T. Dorin, M. Weyland, Acta Mater 61 (2013) 4010-4021.
DOI URL |
[44] |
Q. Contrepois, C. Maurice, J.H. Driver, Mater. Sci. Eng. A 527 (2010) 7305-7312.
DOI URL |
[1] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[2] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[3] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[4] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[5] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[6] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[7] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[8] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[9] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[10] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[11] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[12] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[13] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[14] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[15] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||