J. Mater. Sci. Technol. ›› 2022, Vol. 110: 117-127.DOI: 10.1016/j.jmst.2021.08.025
• Research Article • Previous Articles Next Articles
Xin Liu, Sansan Shuai(), Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang(
), Zhongming Ren(
)
Received:
2021-06-02
Revised:
2021-08-23
Accepted:
2021-08-24
Published:
2021-10-08
Online:
2021-10-08
Contact:
Sansan Shuai,Jiang Wang,Zhongming Ren
About author:
zmren@staff.shu.edu.cn (Z. Ren).Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field[J]. J. Mater. Sci. Technol., 2022, 110: 117-127.
Fig. 3. Transverse microstructures of directionally solidified Ni-27Al alloy under various intensities of magnetic field at the growth speed of (a) 25 µm/s, (b) 100 µm/s.
Fig. 4. 3D XCT reconstruction of the NiAl dendrites directionally solidified under various intensities of magnetic field at the growth speed of (a1-a4) 25 µm/s, (b1-b4) 100 µm/s.
Fig. 5. EBSD maps for longitudinal structures in directionally solidified Ni-27Al alloy at a growth speed of 25 µm/s under different intensities of magnetic field: (a1, a2) 0 T, (b1, b2) 2 T, (c1, c2) 4 T.
Fig. 6. EBSD maps for longitudinal structures in directionally solidified Ni-27Al alloy at a growth speed of 100μm/s under different intensities of magnetic field: (a1, a2) 0 T, (b1, b2) 2 T, (c1, c2) 4 T.
Fig. 7. (a1, a2) stress-strain curves and average ultimate tensile strength (UTS), strain of the tested samples under the growth rate of 25 µm/s; (b1, b2) stress-strain curves and average ultimate tensile strength (UTS), strain of the tested samples under the growth rate of 100 µm/s.
Fig. 8. Schematic illustrations of (a) TEMF imposing on the dendrite and (b) TEMC, Secondary convection near the mushy and (c) microstructure evolution in directionally solidified Ni-27Al alloy under axial magnetic field.
Physical parameters | Unit | Magnitude |
---|---|---|
Thermoelectric power of liquid | μV·K-1 | -38 |
Thermoelectric power of solid NiAl | μV·K-1 | -5.1 |
Electrical conductivity of liquid | Ω-1·m-1 | 0.67 × 106 |
Electrical conductivity of solid NiAl | Ω-1·m-1 | 11.1 × 106 |
Density | kg·m-3 | 7.6 × 103 |
Table 1. Physical parameters of Ni-27Al Alloy.
Physical parameters | Unit | Magnitude |
---|---|---|
Thermoelectric power of liquid | μV·K-1 | -38 |
Thermoelectric power of solid NiAl | μV·K-1 | -5.1 |
Electrical conductivity of liquid | Ω-1·m-1 | 0.67 × 106 |
Electrical conductivity of solid NiAl | Ω-1·m-1 | 11.1 × 106 |
Density | kg·m-3 | 7.6 × 103 |
Fig. 9. Fracture surfaces of directionally solidified Ni-27Al alloy at a growth speed of 25 µm/s under different magnetic field intensities: (a) 0 T, (b) 0.5 T, (c) 2 T, (d) 4 T.
Fig. 10. Fracture surfaces of directionally solidified Ni-27Al alloy at a growth speed of 100 µm/s under different magnetic fields: (a) 0 T, (b) 0.5 T, (c) 2 T, (d) 4 T.
[1] | V.K. Sikka, S.C. Deevi, Viswanathan S, R.W. Swindeman, M.L. Santella, Inter- metallics 8 (2000) 1329-1337. |
[2] |
V.K. Sikka, J.T. Mavity, K. Anderson, Mater. Sci. Eng. A 153 (1992) 712-721.
DOI URL |
[3] |
P. Jozwik, W. Polkowski, Z. Bojar, Materials 8 (2015) 2537-2568.
DOI URL |
[4] | F.E. Heredia, D.P. Pope, Acta Mater. 39 (1991) 2027-2036. |
[5] | V.K. Sikka, M.L. Santella, J.E. Orth, Mater. Sci. Eng. A 239-240 (1997) 564-569. |
[6] |
N.S. Stoloff, C.T. Liu, S.C. Deevi, Intermetallics 8 (2000) 1313-1320.
DOI URL |
[7] |
O. Hunziker, W. Kurz, Metall. Mater. Trans. A 30 (1999) 3167-3175.
DOI URL |
[8] |
J.H. Lee, J.D. Verhoeven, J. Cryst. Growth 143 (1994) 86-102.
DOI URL |
[9] |
J.H. Lee, J.D. Verhoeven, J. Cryst. Growth 144 (1994) 353-366.
DOI URL |
[10] |
J.H. Lee, J.D. Verhoeven, J. Phase Equilibria 15 (2007) 136-146.
DOI URL |
[11] | J. Chen, Q. Zheng, Y.A. Li, Y. Yu, Y.J. Tang, Z.Q. Hu, Scr. Mater. 33 (1995) 675-680. |
[12] |
D. Golberg, M. Demura, T. Hirano, Acta Mater. 46 (1998) 2695-2703.
DOI URL |
[13] | T. Hirano, T. Mawari, Acta Mater. 41 (1993) 1783-1789. |
[14] | A. Misra, R. Gibala, Metall. Mater. Trans. A 28 (1997) 795-807. |
[15] |
J.A. Lopez, G.F. Hanock, Phys. Status. Solidi. 2 (1970) 469-474.
DOI URL |
[16] |
O. Noguchi, Y. Oya, T. Suzuki, Metall. Mater. Trans. A 12 (1981) 1647-1653.
DOI URL |
[17] | T. Hirano, T. Mawari, M. Demura, Y. Isoda, Mater. Sci. Eng. A 239-240 (1997) 324-329. |
[18] |
S. Asai, ISIJ Int. 47 (2007) 519-522.
DOI URL |
[19] |
H. Liu, W. Xuan, X. Xie, J. Yu, J. Wang, Z. Ren, Mater. Lett. 189 (2017) 131-135.
DOI URL |
[20] |
X. Li, Y. Fautrelle, Z. Ren, Acta Mater. 56 (2008) 3146-3161.
DOI URL |
[21] |
W. Xuan, Z. Ren, C. Li, J. Alloy. Compd. 620 (2015) 10-17.
DOI URL |
[22] |
Y.D. Zhang, C. Esling, M.L. Gong, G. Vincent, X. Zhao, L. Zuo, Scr. Mater. 54 (2006)1897-1900.
DOI URL |
[23] |
X. Li, Z. Ren, G. Cao, Y. Fautrelle, C. Esling, Acta Mater. 59 (2011) 6297-6307.
DOI URL |
[24] |
Z. H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest, B. Blanpain, Curr. Opin. Solid State Mater. Sci. 16 (2012) 254-567.
DOI URL |
[25] |
E. Çadırlı, J. Non Cryst. Solid 357 (2011) 809-813.
DOI URL |
[26] |
E. Çadırlı, H. Kaya, D. Räbiger, S. Eckert, M. Gündüz, J. Alloys. Compd. 647 (2015) 471-480.
DOI URL |
[27] |
X. Li, Z. Ren, J. Wang, Y. Han, B. Sun, Mater. Lett. 67 (2012) 205-209.
DOI URL |
[28] |
W.L. Ren, L. Lu, G. Yuan, W. Xuan, Y. Zhong, J. Yu, Z. Ren, Mater. Lett. 100 (2013) 223-226.
DOI URL |
[29] |
T. Zhang, W. Ren, J. Dong, X. Li, Z. Ren, G. Cao, Y. Zhong, K. Deng, Z. Lei, J. Guo, J. Alloy. Compd. 487 (2009) 612-617.
DOI URL |
[30] |
P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Acta Mater. 46 (1998) 4067-4079.
DOI URL |
[31] |
X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z. Ren, R. Moreau, Y. Zhang, C. Esling, J. Cryst. Growth 312 (2010) 267-272.
DOI URL |
[32] |
H. Dong, Y. Chen, Z. Zhang, G. Shan, W. Zhang, F. Liu, J. Mater. Sci. Technol. 59 (2020) 173-179.
DOI |
[33] |
H. Dong, Y. Chen, K. Wang, G. Shan, Z. Zhang, K. Huang, F. Liu, Scr. Mater. 177 (2020) 123-127.
DOI URL |
[34] |
X. Li, Y. Fautrelle, Z. Ren, Acta Mater. 55 (2007) 3803-3813.
DOI URL |
[35] |
H. Liu, W. Xuan, X. Xie, C. Li, J. Wang, J. Yu, X. Li, Y. Zhong, Z. Ren, Metall. Mater. Trans. A 48 (2017) 4193-4203.
DOI URL |
[36] |
R. Tönhardt, G. Amberg, J. Cryst. Growth 194 (1998) 406-425.
DOI URL |
[37] |
H. Assadi, S. Reutzel, D. Herlach, Acta Mater. 54 (2006) 2793-2800.
DOI URL |
[38] | H.K. Kim, J.C. Earthman, E.J. Lavernia, Acta Mater. 40 (1992) 637-647. |
[39] |
C. Liu, J. Shen, J. Zhang, L. Lou, J. Mater. Sci. Technol. 26 (2010) 306-310.
DOI URL |
[40] |
B.C. Wilson, E.R. Cutler, G.E. Fuchs, Mater. Sci. Eng. A 479 (2008) 356-364.
DOI URL |
[41] |
M.S. Bhat, D.R. Poirier, J.C. Heinrich, Metall. Mater. Trans. B 26 (1995) 1049-1056.
DOI URL |
[1] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[2] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[3] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[4] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[5] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[6] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[7] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[8] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[9] | Shen Zhe, Lin Zhongze, Shi Peijian, Zhu Jiale, Zheng Tianxiang, Ding Biao, Guo Yifeng, Zhong Yunbo. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[10] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[11] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[12] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[13] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[14] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[15] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||