J. Mater. Sci. Technol. ›› 2022, Vol. 110: 128-135.DOI: 10.1016/j.jmst.2021.08.083
• Research Article • Previous Articles Next Articles
Lei Chena,b, Yunpeng Wangc, Xin Zhaoa, Yuchao Wanga, Qian Lia, Qichen Wanga,b, Yougen Tangb, Yongpeng Leia,b,*()
Received:
2021-07-24
Revised:
2021-08-22
Accepted:
2021-08-30
Published:
2021-11-09
Online:
2021-11-09
Contact:
Yongpeng Lei
About author:
* State Key Laboratory of Powder Metallurgy, Hunan Key Laboratory of Two-Dimensional Materials, Central South University, Changsha 410083, China. E-mail address: lypkd@163.com (Y. Lei).Lei Chen, Yunpeng Wang, Xin Zhao, Yuchao Wang, Qian Li, Qichen Wang, Yougen Tang, Yongpeng Lei. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting[J]. J. Mater. Sci. Technol., 2022, 110: 128-135.
Fig. 1. (a) The XRD patterns, (b) SEM image and (c) High-resolution TEM image of FeCoNi(S) nanowires. (d) SAED of FeCoNi(S). (e) HAADF-STEM image of a single FeCoNi(S) nanowires and elemental mapping images of Fe, Co, Ni, S and O.
Fig. 2. (a) LSV curves of different samples, (b) corresponding overpotentials at 100, 200 and 500 mA cm-2 and (c) Tafel plots. (d) Comparison of Tafel slopes and potentials required at 100 mA cm-2 (The references were listed in Table S2). (e) ECSAs of different samples. (f) LSV curves before and after 5000 CV cycles and (insets) durability test of FeCoNi(S).
Fig. 3. (a) Fe 2p, (b) Co 2p, (c) Ni 2p XPS spectra of FeCoNi(S) before and after OER test. (d-f) TEM and HRTEM images of post-OER FeCoNi(S). The yellow area, red area and white area represented the FeCo2S4 phase, Ni3S2 phase and amorphous layer, respectively. In situ Raman spectra achieved during the chronopotentiometry measurement of (g) FeCoNi(S), (h) CoNi(S) and (i) Ni(S).
Fig. 4. (a) Gibbs free energy change diagram of the OER process on Ni(Fe,Co)OOH (red line), Ni(Co)OOH (green), and NiOOH (purple line) -OH-group-terminated surface models and the corresponding intermediates for each step. Ni gray, Fe brown, Co blue, O red and H white. The four intermediate states corresponding to the four-electron-transfer process. The calculated overpotentials for the three metal sites occupied by one-, two- and three-elements. (b) LSV curves of the various selenides and (c) oxides.
Fig. 5. (a) LSV curves of FeCoNi(S) as a bifunctional catalyst toward overall water splitting. Inset is the photograph. (b) The current densities at 1.8 V for FeCoNi(S) and reported non-noble bifunctional catalysts. (c) Stability test of FeCoNi(S) over 2000 h. Arrows in (c) indicate the addition of deionized water to maintain electrolyte levels. Inset: enlarged normalized curves for the start and end time period at 500 mA cm-2.
[1] |
I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1 (2017) 0003.
DOI URL |
[2] |
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16 (2017) 57-69.
DOI URL |
[3] |
L. Chen, Y.H. Song, Y. Liu, L. Xu, J.Q. Qin, Y.P. Lei, Y.G. Tang, J. Energy Chem. 50 (2020) 395-401.
DOI URL |
[4] |
Q. Li, Y.C. Wang, J. Zeng, Q.M. Wu, Q.C. Wang, L. Sun, L. Xu, T. Ye, X. Zhao, L. Chen, Z.Y. Chen, L.M. Chen, Y.P. Lei, Chin. Chem. Lett. 32 (2021) 3355-3358.
DOI URL |
[5] |
Y.M. Hao, Y.F. Li, J.X. Wu, L.S. Meng, J.L. Wang, C.L. Jia, T. Liu, X.J. Yang, Z.P. Liu, M. Gong, J. Am. Chem. Soc. 143 (2021) 1493-1502.
DOI URL |
[6] | Q.C. Wang, X.X. Xue, Y.P. Lei, Y.C. Wang, Y.X. Feng, X. Xiong, D.S. Wang, Y.D. Li, Small 16 (2020) 202001571. |
[7] |
Q.R. Shi, C.Z. Zhu, D. Du, Y.H. Lin, Chem. Soc. Rev. 48 (2019) 3181-3192.
DOI URL |
[8] | H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.P. Li, M. Du, Adv. Funct. Mater. 30 (2020) 1910596. |
[9] |
C.Y. Song, Y. Liu, Y.C. Wang, S.H. Tang, W.K. Li, Q. Li, J. Zeng, L. Chen, H.C. Peng, Y.P. Lei, Sci. China Mater. 64 (2021) 1662-1670.
DOI URL |
[10] |
Q. Li, Y.C. Wang, Z.Y. Chen, Y.P. Lei, Rare Met. 40 (2021) 3442-3453.
DOI URL |
[11] |
J.Q. Shan, C. Ye, S.M. Chen, T.L. Sun, Y. Jiao, L.M. Liu, C.Z. Zhu, L. Song, Y. Han, M. Jaroniec, Y.H. Zhu, Y. Zheng, S.Z. Qiao, J. Am. Chem. Soc. 143 (2021) 5201-5211.
DOI URL |
[12] |
Y. Liu, X. Liang, L. Gu, Y. Zhang, G.D. Li, X. Zou, J.S. Chen, Nat. Commun. 9 (2018) 2609.
DOI URL |
[13] | H.C. Peng, J. Ren, Y.C. Wang, Y. Xiong, Q.C. Wang, Q. Li, X. Zhao, L.S. Zhan, L.R. Zheng, Y.G. Tang, Y.P. Lei, Nano Energy 88 (2021) 106307. |
[14] |
Z.F. Zhu, J. Hao, H. Zhu, S.H. Sun, F. Duan, S.L. Lu, M.L. Du, Adv. Fiber Mater. 3 (2021) 117-127.
DOI URL |
[15] |
Q.C. Wang, Y.P. Lei, Y.C. Wang, Y. Liu, C.Y. Song, J. Zeng, Y.H. Song, X.D. Duan, D.S. Wang, Y.D. Li, Energy Environ. Sci. 13 (2020) 1593-1616.
DOI URL |
[16] |
Y. Li, F.M. Li, X.Y. Meng, S.N. Li, J.H. Zeng, Y. Chen, ACS Catal. 8 (2018) 1913-1920.
DOI URL |
[17] |
Y. Wu, Y. Liu, G.D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa, X. Zou, Nano Energy 35 (2017) 161-170.
DOI URL |
[18] |
J. Jiang, F.F. Sun, S. Zhou, W. Hu, H. Zhang, J.C. Dong, Z. Jiang, J.J. Zhao, J.F. Li, W.S. Yan, M. Wang, Nat. Commun. 9 (2018) 2885.
DOI PMID |
[19] | Y. Duan, Z.Y. Yu, S.J. Hu, X.S. Zheng, C.T. Zhang, H.H. Ding, B.C. Hu, Q.Q. Fu, Z.L. Yu, X. Zheng, J.F. Zhu, M.R. Gao, S.H. Yu, Angew. Chem. Int. Ed. 58 (2019) 15772-15777. |
[20] |
L.G. Huang, Z.S. He, J.F. Guo, S.E. Pei, H.B. Shao, J.M. Wang, Nano Res. 13 (2020) 246-254.
DOI URL |
[21] | X. Bo, R.K. Hocking, S. Zhou, Y.B. Li, X.J. Chen, J.C. Zhuang, Y. Du, C. Zhao, En- ergy Environ. Sci. 13 (2020) 4225-4237. |
[22] | Y.H. Dou, C.T. He, L. Zhang, M. Al-Mamun, H.P. Guo, W.C. Zhang, Q.B. Xia, J.T. Xu, L.X. Jiang, Y. Wang, P. Liu, X.M. Chen, H.J. Yin, H.J. Zhao, Cell Rep. Phys. Sci. 1 (2020) 100077. |
[23] |
M.L. Yan, K. Mao, P.X. Cui, C. Chen, J. Zhao, X.Z. Wang, L.J. Yang, H. Yang, Q. Wu, Z. Hu, Nano Res. 13 (2020) 328-334.
DOI URL |
[24] | X. Luo, P.X. Ji, P.Y. Wang, R.L. Cheng, D. Chen, C. Lin, J.N. Zhang, J.W. He, Z.H. Shi, N. Li, S.Q. Xiao, S.C. Mu, Adv. Energy Mater. 10 (2020) 1903891. |
[25] | G. Chen, Z.W. Hu, Y.P. Zhu, B.B. Gu, Y.J. Zhong, H.J. Lin, C.T. Chen, W. Zhou, Z.P. Shao, Adv. Mater. 30 (2018) 1804333. |
[26] | X. Liu, R.T. Guo, K. Ni, F.J. Xia, C.J. Niu, B. Wen, J.S. Meng, P.J. Wu, J.S. Wu, X.J. Wu, L.Q. Mai, Adv. Mater. 32 (2020) 2001136. |
[27] |
X.J. Cao, T.Z. Wang, L.F. Jia, Adv. Fiber Mater. (2021), doi: 10.1007/s42765-021-00065-z.
DOI |
[28] | Y.D. Hu, G. Luo, L.G. Wang, X.K. Liu, Y.T. Qu, Y.S. Zhou, F.Y. Zhou, Z.J. Li, Y.F. Li, T. Yao, C. Xiong, B. Yang, Z.Q. Yu, Y.E. Wu, Adv. Energy Mater. 11 (2021) 2002816. |
[29] |
H.M. Sun, X.B. Xu, Z.H. Yan, X. Chen, F.Y. Cheng, P.S. Weiss, J. Chen, Chem. Mater. 29 (2017) 8539-8547.
DOI URL |
[30] | L.Z. Zhuang, L. Ge, Y.S. Yang, M.R. Li, Y. Jia, X.D. Yao, Z.H. Zhu, Adv. Mater. 29 (2017) 1606793. |
[31] | D. Chen, Z.H. Pu, R.H. Lu, P.X. Ji, P.Y. Wang, J.W. Zhu, C. Lin, H.W. Li, X.G. Zhou, Z.Y. Hu, F.J. Xia, J.S. Wu, S.C. Mu, Adv. Energy Mater. 10 (2020) 2000814. |
[32] |
M. Chauhan, K.P. Reddy, C.S. Gopinath, S. Deka, ACS Catal. 7 (2017) 5871-5879.
DOI URL |
[33] | K. Dastafkan, Q. Meyer, X.J. Chen, C. Zhao, Small 16 (2020) 2002412. |
[34] |
Y.H. Dou, C.T. He, L. Zhang, H.J. Yin, M. Al-Mamun, J.M. Ma, H.J. Zhao, Nat. Commun. 11 (2020) 1664.
DOI URL |
[35] | Z. Qiu, Y. Ma, T. Edvinsson, Nano Energy 66 (2019) 104118. |
[36] | Y. Liu, Q.G. Feng, W. Liu, Q. Li, Y.C. Wang, B. Liu, L.R. Zheng, W. Wang, W. Huang, L.M. Chen, X. Xiong, Y.P. Lei, Nano Energy 81 (2021) 105641. |
[37] |
B. You, N. Jiang, M.L. Sheng, M.W. Bhushan, Y.J. Sun, ACS Catal. 6 (2016) 714-721.
DOI URL |
[38] | X.R. Gao, Y. Yu, Q.R. Liang, Y.J. Pang, L.Q. Miao, X.M. Liu, Z.K. Kou, J.Q. He, S.J. Pennycook, S.C. Mu, J. Wang, Appl. Catal. B Environ. 270 (2020) 118889. |
[39] |
M.K. Bates, Q.Y. Jia, H. Doan, W.T. Liang, S. Mukerjee, ACS Catal. 6 (2016) 155-161.
DOI URL |
[40] |
Y. Wang, Y.L. Zhu, S.L. Zhao, S.X. She, F.F. Zhang, Y. Chen, T. Williams, T. Gen- genbach, L.H. Zu, H.Y. Mao, W. Zhou, Z.P. Shao, H.T. Wang, J. Tang, D.Y. Zhao, C. Selomulya, Matter 3 (2020) 2124-2137.
DOI URL |
[41] |
G.Z. Fang, Q.C. Wang, J. Zhou, Y.P. Lei, Z.X. Chen, Z.Q. Wang, A.Q. Pan, S.Q. Liang, ACS Nano 13 (2019) 5635-5645.
DOI URL |
[42] | G. Yilmaz, C.F. Tan, Y.F. Lim, G.W. Ho, Adv. Energy Mater. 9 (2019) 1802983. |
[43] |
X. Liu, K. Ni, B. Wen, R.T. Guo, C.J. Niu, J.S. Meng, Q. Li, P.J. Wu, Y.W. Zhu, X.J. Wu, L.Q. Mai, ACS Energy Lett. 4 (2019) 2585-2592.
DOI URL |
[44] |
Z. Qiu, C.W. Tai, G.A. Niklasson, T. Edvinsson, Energy Environ. Sci. 12 (2019) 572-581.
DOI URL |
[45] | J. Hu, S.W. Li, J.Y. Chu, S.Q. Niu, J. Wang, Y.C. Du, Z.H. Li, X.J. Han, P. Xu, ACS Catal. 9 (2019) 10705-10711. |
[46] |
M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135 (2013) 12329-12337.
DOI PMID |
[47] |
J.F. Zhang, J.Y. Liu, L.F. Xi, Y.F. Yu, N. Chen, S.H. Sun, W.C. Wang, K.M. Lange, B. Zhang, J. Am. Chem. Soc. 140 (2018) 3876-3879.
DOI URL |
[48] |
Z.K. Kou, Y. Yu, X.M. Liu, X.R. Gao, L.R. Zheng, H.Y. Zou, Y.J. Pang, Z.Y. Wang, Z.H. Pan, J.Q. He, S.J. Pennycook, J. Wang, ACS Catal. 10 (2020) 4411-4419.
DOI URL |
[49] |
L.F. Li, Y.F. Li, Z.P. Liu, ACS Catal. 10 (2020) 2581-2590.
DOI URL |
[50] |
A.G. Rajan, J.M.P. Martirez, E.A. Carter, J. Am. Chem. Soc. 142 (2020) 3600-3612.
DOI URL |
[51] | Y.Q. Sun, K. Xu, Z.X. Wei, H.L. Li, T. Zhang, X.Y. Li, W.P. Cai, J.M. Ma, H.J. Fan, Y. Li, Adv. Mater. 30 (2018) 1802121. |
[52] | N. C.S. Selvam, L.J. Du, B.Y. Xia, P.J. Yoo, B. You, Adv. Funct. Mater. 31 (2021) 2008190. |
[53] | D. Yuan, Y.H. Dou, C.T. He, L.P. Yu, L. Xu, D. Adekoya, Q.B. Xia, J.M. Ma, S.X. Dou, S.Q. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100331. |
[54] |
S. Jin, ACS Energy Lett. 2 (2017) 1937-1938.
DOI URL |
[55] |
D.S. Raja, H.W. Lin, S.Y. Lu, Nano Energy 57 (2019) 1-13.
DOI URL |
[56] | M.J. Lu, L. Li, D. Chen, J.Z. Li, N. Klyui, W. Han, Electrochim. Acta 330 (2020) 135210. |
[1] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
[2] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[3] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[4] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
[5] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[6] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[7] | Manigandan Ramadoss, Yuanfu Chen, Yang Hu, Bin Wang, Ramkumar Jeyagopal, Karpuraranjith Marimuthu, Xinqiang Wang, Dongxu Yang. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation [J]. J. Mater. Sci. Technol., 2021, 78(0): 229-237. |
[8] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[9] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[10] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
[11] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[12] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[13] | Guanglu Li, Chang Liu, Zhao Zhang, Baihua Cui, Yanan Chen, Yida Deng, Wenbin Hu. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions [J]. J. Mater. Sci. Technol., 2021, 81(0): 131-138. |
[14] | Jian Huang, Peilin Wang, Peng Li, Huayi Yin, Dihua Wang. Regulating electrolytic Fe0.5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 93(0): 110-118. |
[15] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||