J. Mater. Sci. Technol. ›› 2022, Vol. 110: 178-186.DOI: 10.1016/j.jmst.2021.09.012
• Research Article • Previous Articles Next Articles
Shuang Liua, Enhui Wanga, Shichun Liua, Chunyu Guoa, Hailong Wangb, Tao Yanga,*(), Xinmei Houa,*(
)
Received:
2021-06-16
Revised:
2021-08-19
Accepted:
2021-09-19
Published:
2021-11-25
Online:
2021-11-25
Contact:
Tao Yang,Xinmei Hou
About author:
houxinmeiustb@ustb.edu.cn (X. Hou).Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor[J]. J. Mater. Sci. Technol., 2022, 110: 178-186.
Fig. 2. (a) XRD patterns of the raw material Al4SiC4 and the synthesized SiC/C. (b) Rietveld refinement XRD patterns of the samples. (c) XPS survey spectrum of SiC/C NSs. (d-f) High-resolution XPS spectra of Si 2p (d), C 1 s (e) and O 1 s (f) of SiC/C NSs.
Fig. 4. (a) SEM image of Al4SiC4 under low magnification. (b) SEM image of the cross-section of Al4SiC4 under high magnification. (c-e) SEM images of SiC/C NSs under lower to higher magnification. (f) AFM topographic image of the nanosheet and the corresponding cross-sectional analysis along the red line.
Fig. 5. (a) TEM image of the obtained SiC/C NSs. (b) The structure schematic diagram of the interface of 3C/2H-SiC. (c) The lattice fringe image of 3C-SiC and related SAED pattern. (d) The lattice fringe image of 2H-SiC and related SAED pattern. (e) High-magnification TEM image of SiC nanosheet coated with graphite layer and corresponding SAED pattern.
Fig. 6. (a) CV curves obtained for SiC/C NSs at scan rates from 10 to 500 mV/s in a voltage range of 0-0.6 V. (b) The areal capacitance and the gravimetric capacitance at different scan rates. (c) Charge-discharge curves obtained for SiC/C NSs with the variation of current densities. (d) Cycling performance test of SiC/C NSs at a scan rate of 200 mV/s for 20,000 cycles.
Electrode material | Electrolyte | Specific capacitance | Refs. |
---|---|---|---|
Nanocrystalline 3C-SiC films | 0.1 mol/L H2SO4 | 70 μF/cm2 at 10 mV/s | [ |
SiC nanowires | 3.5 mol/L HCl | 240 μF/cm2 at 100 mV/s | [ |
N-doped polycrystalline 3C-SiC | 1 mol/L H2SO4 | 743 μF/cm2 at 50 mV/s | [ |
Graphene/SiC | 1 mol/L Na2SO4 | 69 μF/cm2 at 100 mV/s | [ |
Graphene/SiC/C | 0.5 mol/L H2SO4 | 43 μF/cm2 at 50 mV/s | [ |
3C-SiC/graphene hybrid nanolaminate | 1 mol/L Na2SO4 | 321.4 μF/cm2 at 10 mV/s | [ |
SiC nanocauliflowers | 1 mol/L Na2SO4 | 188 F/g at 10 mV/s | [ |
SiC/N-MnO2 composites | 1 mol/L Na2SO4 | 273.2 F/g at 10 mV/s | [ |
Hollow SiC fibers | 1 mol/L Na2SO4 | 22 F/g at 10 mV/s | [ |
Microsphere silicon carbide-MnO2 nanoneedles | 1 mol/L Na2SO4 | 52 F/g at 10 mV/s | [ |
SiC spheres | 1 mol/L Na2SO4 | 72.4 F/g at 10 mV/s | [ |
SiC/C NSs | 1 mol/L Na2SO4 | 734 μF/cm2 at 10 mV/s 130 F/g at 10 mV/s | This work |
Table 1. Comparison of the electrochemical performance of various SiC nanostructures applied for supercapacitor electrodes ever reported.
Electrode material | Electrolyte | Specific capacitance | Refs. |
---|---|---|---|
Nanocrystalline 3C-SiC films | 0.1 mol/L H2SO4 | 70 μF/cm2 at 10 mV/s | [ |
SiC nanowires | 3.5 mol/L HCl | 240 μF/cm2 at 100 mV/s | [ |
N-doped polycrystalline 3C-SiC | 1 mol/L H2SO4 | 743 μF/cm2 at 50 mV/s | [ |
Graphene/SiC | 1 mol/L Na2SO4 | 69 μF/cm2 at 100 mV/s | [ |
Graphene/SiC/C | 0.5 mol/L H2SO4 | 43 μF/cm2 at 50 mV/s | [ |
3C-SiC/graphene hybrid nanolaminate | 1 mol/L Na2SO4 | 321.4 μF/cm2 at 10 mV/s | [ |
SiC nanocauliflowers | 1 mol/L Na2SO4 | 188 F/g at 10 mV/s | [ |
SiC/N-MnO2 composites | 1 mol/L Na2SO4 | 273.2 F/g at 10 mV/s | [ |
Hollow SiC fibers | 1 mol/L Na2SO4 | 22 F/g at 10 mV/s | [ |
Microsphere silicon carbide-MnO2 nanoneedles | 1 mol/L Na2SO4 | 52 F/g at 10 mV/s | [ |
SiC spheres | 1 mol/L Na2SO4 | 72.4 F/g at 10 mV/s | [ |
SiC/C NSs | 1 mol/L Na2SO4 | 734 μF/cm2 at 10 mV/s 130 F/g at 10 mV/s | This work |
[1] |
H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. Macdonald, R.S. Ruoff, Nat. Commun. 5 (2017) 3317.
DOI URL |
[2] |
M. Kim, I. Oh, J. Kim, J. Mater. Chem. A 3 (2015) 3944-3951.
DOI URL |
[3] |
M. Kim, I. Oh, J. Kim, Electrochim. Acta 196 (2016) 357-368.
DOI URL |
[4] |
E. Tee, I. Tallo, H. Kurig, T. Thomberg, A. Jänes, E. Lust, Electrochim. Acta 161 (2015) 364-370.
DOI URL |
[5] |
J. Chen, N. Li, Y. Wei, B. Han, Y. Zhang, J. Alloys Compd. 788 (2019) 345-351.
DOI URL |
[6] |
X. Cao, C. Tan, X. Zhang, W. Zhao, H. Zhang, Adv. Mater. 28 (2016) 6167-6196.
DOI URL |
[7] |
S.W. Yu, P.W. Fan, W.Z. Tang, X.J. Liu, Thin Solid Films 520 (2011) 828-832.
DOI URL |
[8] | X. Liu, T. Ma, N. Pinna, J. Zhang, Adv. Funct. Mater. 27 (2017) 1702168. |
[9] | S. Kumar, G. Saeed, L. Zhu, K.N. Hui, J.H. Lee, Chem. Eng. J. 403 (2020) 126352. |
[10] | W.N. Liu, J.H. Chen, T. Yang, K.C. Chou, X.M. Hou, Dalton Trans 45 (2016) 13503-13508. |
[11] | T. Yang, S. Chen, X. Li, X. Xu, F. Gao, L. Wang, J. Chen, W. Yang, X. Hou, X. Fang, Adv. Funct. Mater. 29 (2019) 1806250. |
[12] | H. Dong, Z. Fang, T. Yang, Y.G. Yu, D.H. Wang, K.C. Chou, X.M. Hou, Ionics (Kiel) 22 (2016) 1493-1500. |
[13] | H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 10886-10895. |
[14] | S. Heuser, N. Yang, F. Hof, A. Schulte, J. Xin, Small 14 (2018) 1801857. |
[15] | L. Cai, Q. Xu, W. Lu, R. Tu, T. Goto, S. Zhang, Ceram. Int. 46 (2020) 16518-16523. |
[16] |
T. Seeger, P. Kohler-Redlich, M. Ruehle, Adv. Mater. 12 (20 0 0) 279-282.
DOI URL |
[17] |
D.W. Niles, H. Hochst, G.W. Zajac, T.H. Fleisch, J.M. Meese, J. Appl. Phys. 65 (1989) 662-667.
DOI URL |
[18] |
D. Tang, R. Yi, W. Zhang, Z. Qiao, Y. Liu, Q. Huo, D. Wang, Mater. Lett. 198 (2017) 140-143.
DOI URL |
[19] |
R.J. Iwanowski, K. Fronc, W. Paszkowicz, J. Alloys Compd. 286 (1999) 143-147.
DOI URL |
[20] |
D. Tang, R. Yi, W. Zhang, Z. Qiao, Y. Liu, Q. Huo, D. Wang, Mater. Lett. 198 (2017) 140-143.
DOI URL |
[21] |
M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Nano Energy 51 (2018) 366-372.
DOI URL |
[22] |
P. Wang, L. Cheng, Y. Zhang, W. Yuan, H. Pan, H. Wu, Compos. Pt. A-Appl. Sci. Manuf. 104 (2018) 68-80.
DOI URL |
[23] |
O.S. Kushwaha, C.V. Avadhani, R.P. Singh, Adv. Mater. Lett. 5 (2014) 272-279.
DOI URL |
[24] |
X. Yin, H. Li, R. Yuan, J. Lu, J. Mater. Sci. Technol. 81 (2021) 162-174.
DOI URL |
[25] |
T. Li, L. Xu, L. Wang, L. Yang, Y. Qian, J. Alloys Compd. 484 (2009) 341-346.
DOI URL |
[26] |
Y. Sasaki, Y. Nishina, M. Sato, K. Okamura, J. Mater. Sci. 22 (1987) 443-448.
DOI URL |
[27] |
J. Liu, X. Zhou, P. Tatarko, Q. Yuan, L. Zhang, H. Wang, Z. Huang, Q. Huang, J. Adv. Ceram. 9 (2020) 193-203.
DOI URL |
[28] | F. Bottin, F. Finocchi, C. Noguera, Phys. Rev. B 68 (2003) 035418. |
[29] | L.E. Luna, D. Gardner, V. Radmilovic, R. Maboudian, C. Carraro, J. Phys. Chem. C 122 (2018) 12047-12051. |
[30] |
L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, J. Mater. Chem. A 1 (2013) 6462-6470.
DOI URL |
[31] |
G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Adv. Mater. 26 (2014) 2676-2682.
DOI URL |
[32] |
X.Y. Chen, Y.Y. He, H. Song, Z.J. Zhang, Carbon N Y 72 (2014) 410-420.
DOI URL |
[33] |
L. Gu, Y. Wang, R. Lu, W. Wang, X. Peng, J. Sha, J. Power Sources 273 (2015) 479-485.
DOI URL |
[34] | X.Q. Lin, W.D. Wang, Q. Lü, Y.Q. Jin, Q. Lin, R. Liu, Mater. Sci. Technol. 10 (2017) 1339-1345. |
[35] | J.P. Alper, M. Vincent, C. Carraro, R. Maboudian, Appl. Phys. Lett. 100 (2012) 163901. |
[36] | F. Liu, A. Gutes, I. Laboriante, C. Carraro, R. Maboudian, Appl. Phys. Lett. 99 (2011) 112104. |
[37] |
L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20 (2010) 5983 5980.
DOI URL |
[38] | P.P. Liang, H.X. Li, G. Wang, J.S. Han, B. Yuan, Y.N. Cao, Q. Zhang, Mater. Lett. 284 (2021) 129014. |
[39] |
A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, R. Chandra, Ind. Eng. Chem. Res. 55 (2016) 9452-9458.
DOI URL |
[40] |
M. Kim, Y. Yoo, J. Kim, J. Power Sources 265 (2014) 214-222.
DOI URL |
[41] | P. Liu, L. Dong, H.U. Shi, B.U. Jing, H.Y. Wei, Y. Cui, Y.J. Chen, J. Synth. Cryst. 47 (2018) 2277-2282. (in Chinese) |
[42] |
M. Kim, J. Kim, Phys. Chem. Chem. Phys. 16 (2014) 11323-11336.
DOI URL |
[43] |
M. Kim, J. Kim, ACS Appl. Mater. Interfaces 6 (2014) 9036-9045.
DOI URL |
[44] | J. Kuang, W. Cao, Appl. Phys. Lett. 103 (2013) 183118. |
[45] | H. Gong, Z. Li, Z. Chen, Q. Liu, C. Huang, A.C.S. Appl, Nano Mater 3 (2020) 3665-3674. |
[46] | M. Gao, W.K. Wang, Q. Rong, J. Jiang, Y.J. Zhang, H.Q. Yu, ACS Appl. Mater. In- terfaces 10 (2018) 23163-23173. |
[47] |
J. Xu, F. Zheng, C. Xi, Y. Yu, L. Chen, W. Yang, P. Hu, Q. Zhen, S. Bashir, J. Power Sources 404 (2018) 47-55.
DOI URL |
[1] | Lu Qiong, Lv Yaozha, Zhang Chi, Zhang Hongbo, Chen Wei, Xu Zhanyuan, Feng Peizhong, Fan Jinglian. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[2] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[3] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[4] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[5] | Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip [J]. J. Mater. Sci. Technol., 2022, 107(0): 183-196. |
[6] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
[7] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[8] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[9] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[10] | E. Vazirinasab, G. Momen, R. Jafari. A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite [J]. J. Mater. Sci. Technol., 2021, 66(0): 213-225. |
[11] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[12] | Fengyou Wang, Jinyue Du, Yuhong Zhang, Meifang Yang, Donglai Han, Lili Yang, Lin Fan, Yingrui Sui, Yunfei Sun, Jinghai Yang. Upgraded antisolvent engineering enables 2D@3D quasi core-shell perovskite for achieving stable and 21.6% efficiency solar cells [J]. J. Mater. Sci. Technol., 2021, 92(0): 21-30. |
[13] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[14] | Bing Yang, Gang He, Wenhao Wang, Yongchun Zhang, Chong Zhang, Yufeng Xia, Xiaofen Xu. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits [J]. J. Mater. Sci. Technol., 2021, 70(0): 49-58. |
[15] | Junyuan Bai, Hongbo Xie, Xueyong Pang, Guo Yuan, Lei Wang, Yuping Ren, Gaowu Qin. Nucleation and growth mechanisms of γ’’ phase with single-unit-cell height in Mg-RE-Zn(Ag) series alloys: a first-principles study [J]. J. Mater. Sci. Technol., 2021, 79(0): 133-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||