J. Mater. Sci. Technol. ›› 2022, Vol. 103: 232-243.DOI: 10.1016/j.jmst.2021.07.013
• Research Article • Previous Articles Next Articles
Thi Kim Anh Nguyena, Thanh-Truc Phamb, Bolormaa Gendensurena, Eun-Suok Oha, Eun Woo Shina,*()
Received:
2021-04-05
Revised:
2021-05-24
Accepted:
2021-07-05
Published:
2022-03-20
Online:
2021-09-20
Contact:
Eun Woo Shin
About author:
* E-mail address: ewshin@ulsan.ac.kr (E.W. Shin).Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres[J]. J. Mater. Sci. Technol., 2022, 103: 232-243.
Sample | SBET (m2/g) a | V (cm3/g) a | L (nm) a | Band gap (eV) b |
---|---|---|---|---|
ATb | 25.0 | 0.203 | 18.3 | 2.40 |
CTb | 17.9 | 0.121 | 26.5 | 2.35 |
NTb | 11.4 | 0.130 | 45.9 | 2.46 |
fATw | 70.1 | 0.455 | 14.5 | 2.60c |
fCTw | 23.0 | 0.142 | 24.5 | 2.74c |
fNTw | 24.0 | 0.248 | 40.0 | 2.52c |
Table 1 Textural data and band gaps of the prepared photocatalysts.
Sample | SBET (m2/g) a | V (cm3/g) a | L (nm) a | Band gap (eV) b |
---|---|---|---|---|
ATb | 25.0 | 0.203 | 18.3 | 2.40 |
CTb | 17.9 | 0.121 | 26.5 | 2.35 |
NTb | 11.4 | 0.130 | 45.9 | 2.46 |
fATw | 70.1 | 0.455 | 14.5 | 2.60c |
fCTw | 23.0 | 0.142 | 24.5 | 2.74c |
fNTw | 24.0 | 0.248 | 40.0 | 2.52c |
Scheme 2. Schematic illustration of the bubble burst process over bulk g-C3N4, the chemical oxidative etching on water dispersible g-C3N4, and the corresponding morphologies.
Fig. 4. Atomic ratios of sulfur and oxygen to carbon for bulk and freeze-dried water-dispersible g-C3N4 photocatalysts. The values were calculated from the XPS data.
Fig. 6. PL emission spectra (A) of bulk g-C3N4 and water-dispersible g-C3N4 (inset) and EIS Nyquist plots (B) for bulk g-C3N4 and freeze-dried water-dispersible g-C3N4.
Fig. 7. Time-resolved fluorescence decay spectra in the ns time scale for bulk and water-dispersible g-C3N4 with excitation 400 nm (Inset table: the calculated average fluorescence lifetime (τav)).
Fig. 8. Kinetic data of MB adsorption in the dark (A) for the bulk and water-dispersible g-C3N4 photocatalysts and corresponding pseudo-second-order kinetic plots (B). Kinetic data of TC-HCl adsorption in the dark (C) for the bulk and water-dispersible g-C3N4 photocatalysts and corresponding pseudo-second-order kinetic plots (D).
Sample | Adsorption kinetics | Photocatalytic kinetics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MB | TC-HCl | MB | TC-HCl | |||||||
qe (mg/gcat) | kads (g/mg min)2 a | r2 | qe (mg/gcat) | kads (g/mg min)2 a | r2 | kapp × 103 (min-1) b | r2 | kapp × 103 (min-1) b | r2 | |
ATb | 20.9 | 0.0469 | 0.9865 | 29.5 | 0.0333 | 0.9992 | 1.5 | 0.9774 | 6.6 | 0.9965 |
CTb | 55.3 | 0.0169 | 0.9921 | 21.2 | 0.0458 | 0.9967 | 2.7 | 0.9992 | 2.1 | 0.9963 |
NTb | 13.1 | 0.0734 | 0.9873 | 28.0 | 0.0361 | 0.9992 | 0.5 | 0.9689 | 2.1 | 0.9914 |
ATw | 126.9 | 0.0074 | 0.9987 | 29.4 | 0.033 | 0.9975 | 14.4 | 0.9905 | 10.0 | 0.9977 |
CTw | 101.2 | 0.0094 | 0.9986 | 33.1 | 0.0295 | 0.9974 | 18.7 | 0.9937 | 15.9 | 0.9991 |
NTw | 184.0 | 0.0052 | 0.9989 | 27.0 | 0.0363 | 0.9982 | 25.3 | 0.9767 | 17.3 | 0.9992 |
Table 2 Kinetic data for adsorption and photocatalytic degradation of MB and TC-HCl for the prepared photocatalysts.
Sample | Adsorption kinetics | Photocatalytic kinetics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MB | TC-HCl | MB | TC-HCl | |||||||
qe (mg/gcat) | kads (g/mg min)2 a | r2 | qe (mg/gcat) | kads (g/mg min)2 a | r2 | kapp × 103 (min-1) b | r2 | kapp × 103 (min-1) b | r2 | |
ATb | 20.9 | 0.0469 | 0.9865 | 29.5 | 0.0333 | 0.9992 | 1.5 | 0.9774 | 6.6 | 0.9965 |
CTb | 55.3 | 0.0169 | 0.9921 | 21.2 | 0.0458 | 0.9967 | 2.7 | 0.9992 | 2.1 | 0.9963 |
NTb | 13.1 | 0.0734 | 0.9873 | 28.0 | 0.0361 | 0.9992 | 0.5 | 0.9689 | 2.1 | 0.9914 |
ATw | 126.9 | 0.0074 | 0.9987 | 29.4 | 0.033 | 0.9975 | 14.4 | 0.9905 | 10.0 | 0.9977 |
CTw | 101.2 | 0.0094 | 0.9986 | 33.1 | 0.0295 | 0.9974 | 18.7 | 0.9937 | 15.9 | 0.9991 |
NTw | 184.0 | 0.0052 | 0.9989 | 27.0 | 0.0363 | 0.9982 | 25.3 | 0.9767 | 17.3 | 0.9992 |
Fig. 9. MB photodegradation results for bulk and water-dispersible g-C3N4 under visible-light irradiation (A) C/C0 vs. t and (B) ln(C/C0) vs. t. TC-HCl photodegradation results for bulk and water-dispersible g-C3N4 under visible-light irradiation (C) C/C0 vs. t and (D) ln(C/C0) vs. t.
[1] | F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, Sci. Rep. 8 (2018) 1-9. |
[2] |
C. Li, S. Yu, H. Che, X. Zhang, J. Han, Y. Mao, Y. Wang, C. Liu, H. Dong, ACS Sustain. Chem. Eng. 6 (2018) 16437-16447.
DOI URL |
[3] |
Y. Zhang, J. Zhou, J. Chen, X. Feng, W. Cai, J. Hazard. Mater. 392 (2020) 122315.
DOI PMID |
[4] |
M. Panizza, A. Barbucci, R. Ricotti, G. Cerisola, Sep. Purif. Technol. 54 (2007) 382-387.
DOI URL |
[5] |
S. Payra, S. Challagulla, Y. Bobde, C. Chakraborty, B. Ghosh, S. Roy, J. Hazard. Mater. 373 (2019) 377-388.
DOI URL |
[6] |
G. Elango, S.M. Roopan, J. Photochem. Photobiol. B Biol. 155 (2016) 34-38.
DOI URL |
[7] |
Z. Wang, M. Gao, X. Li, J. Ning, Z. Zhou, G. Li, Mater. Sci. Eng. C 108 (2020) 110196.
DOI URL |
[8] |
M. Tang, Y. Ao, C. Wang, P. Wang, Appl. Catal. B Environ. 270 (2020) 118918.
DOI URL |
[9] |
F. Guo, X. Huang, Z. Chen, H. Ren, M. Li, L. Chen, J. Hazard. Mater. 390 (2020) 122158.
DOI URL |
[10] |
B. Li, C. Lai, P. Xu, G. Zeng, D. Huang, L. Qin, H. Yi, M. Cheng, L. Wang, F. Huang, S. Liu, M. Zhang, J. Clean. Prod. 225 (2019) 898-912.
DOI URL |
[11] |
A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, J. Colloid Interface Sci. 580 (2020) 503-514.
DOI URL |
[12] |
S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, J. Clean. Prod. 276 (2020) 124319.
DOI URL |
[13] |
A.N. Oliveros, J.A.I. Pimentel, M.D.G. de Luna, S. Garcia-Segura, R.R.M. Abarca, R.A. Doong, Chem. Eng. J. 403 (2021) 126213.
DOI URL |
[14] | M. Huang, J. Li, Y. Huang, X. Zhou, Z. Qin, Z. Tong, M. Fan, B. Li, L. Dong, J. Alloy. Compd. (2020) 158132. |
[15] |
S.Y. Ejeta, T. Imae, J. Photochem. Photobiol. A Chem. 404 (2021) 112955.
DOI URL |
[16] |
X. Jiang, Z. Zhang, M. Sun, W. Liu, J. Huang, H. Xu, Appl. Catal. B Environ. 281 (2021) 119473.
DOI URL |
[17] |
S.K. Kuila, R. Sarkar, P. Kumbhakar, P. Kumbhakar, C.S. Tiwary, T.K. Kundu, J. Environ. Chem. Eng. 8 (2020) 103942.
DOI URL |
[18] |
B.R.M. de Lima, N.M.P. do Nascimento, J.R. Zamian, C.E.F. da Costa, L.A.S. do Nascimento, S.G. Carneiro-Moreira, G.N. da Rocha Filho, Environ. Chem. Lett. 18 (2020) 1413-1422.
DOI URL |
[19] | A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Mol. Catal. 488 (2020) 110902. |
[20] |
A. Nasri, B. Jaleh, S. Khazalpour, M. Nasrollahzadeh, M. Shokouhimehr, Int. J. Biol. Macromol. 164 (2020) 3012-3024.
DOI URL |
[21] |
K.K. Das, S. Patnaik, S. Mansingh, A. Behera, A. Mohanty, C. Acharya, K.M. Parida, J. Colloid Interface Sci. 561 (2020) 551-567.
DOI URL |
[22] |
S. Gong, Z.J. Jiang, P. Shi, J. Fan, Q. Xu, Y. Min, Appl. Catal. B Environ. 238 (2018) 318-327.
DOI URL |
[23] | D.R. Paul, R. Sharma, P. Panchal, S.P. Nehra, A.P. Gupta, A. Sharma, Int. J. Hy-drog. Energy 45 (2020) 23937-23946. |
[24] |
H. Lv, Y. Huang, R.T. Koodali, G. Liu, Y. Zeng, Q. Meng, M. Yuan, ACS Appl. Mater. Interfaces 12 (2020) 12656-12667.
DOI URL |
[25] |
S. Ouedraogo, B. Chouchene, C. Desmarets, T. Gries, L. Balan, R. Fournet, G. Medjahdi, K. Bayo, R. Schneider, Appl. Catal. A Gen. 563 (2018) 127-136.
DOI URL |
[26] |
D. Das, D. Banerjee, M. Mondal, A. Shett, B. Das, N.S. Das, U.K. Ghorai, K.K. Chattopadhyay, Mater. Res. Bull. 101 (2018) 291-304.
DOI URL |
[27] |
S. Gu, J. Xie, C.M. Li, RSC Adv. 4 (2014) 59436-59439.
DOI URL |
[28] |
D. Das, D. Banerjee, B. Das, N.S. Das, K.K. Chattopadhyay, Mater. Res. Bull. 89 (2017) 170-179.
DOI URL |
[29] |
J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2 (2014) 353-358.
DOI URL |
[30] |
Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Catal. Sci. Technol. 4 (2014) 1556-1562.
DOI URL |
[31] |
P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, J. Mater. Chem. A 5 (2017) 3230-3238.
DOI URL |
[32] |
S. Samanta, R. Srivastava, Mater. Adv. 1 (2020) 1506-1545.
DOI URL |
[33] |
J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, Nat. Commun. 11 (2020) 1-8.
DOI URL |
[34] |
A. Muhammad, M. Tahir, S.S. Al-Shahrani, A. Mahmood Ali, S.U. Rather, Appl. Surf. Sci. 504 (2020) 144177.
DOI URL |
[35] | Q. Li, Z. Sun, H. Wang, Z. Wu, J. CO 2 Util. 28 (2018) 126-136. |
[36] |
J. Yi, W. El-Alami, Y. Song, H. Li, P.M. Ajayan, H. Xu, Chem. Eng. J. 382 (2020) 122812.
DOI URL |
[37] |
S. Chen, C. Wang, J. Yan, D. Lu, Microchem. J. 158 (2020) 105211.
DOI URL |
[38] |
C. Yao, A. Yuan, Z. Wang, H. Lei, L. Zhang, L. Guo, X. Dong, J. Mater. Chem. A 7 (2019) 13071-13079.
DOI URL |
[39] |
J. Xu, M. Antonietti, J. Am. Chem. Soc. 139 (2017) 6026-6029.
DOI URL |
[40] |
T. Xu, D. Wang, L. Dong, H. Shen, W. Lu, W. Chen, Appl. Catal. B Environ. 244 (2019) 96-106.
DOI URL |
[41] |
A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, S.R. Pouran, Catal. Rev. Sci. Eng. 61 (2019) 595-628.
DOI URL |
[42] |
X. Ji, X. Yuan, J. Wu, L. Yu, H. Guo, H. Wang, H. Zhang, D. Yu, Y. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 24616-24624.
DOI URL |
[43] |
L. Jing, R. Zhu, D.L. Phillips, J.C. Yu, Adv. Funct. Mater. 27 (2017) 1703484.
DOI URL |
[44] |
L. Chen, J. Song, Adv. Funct. Mater. 27 (2017) 1702695.
DOI URL |
[45] |
Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Langmuir 18 (2002) 4054-4060.
DOI URL |
[46] |
H.J. Li, B.W. Sun, L. Sui, D.J. Qian, M. Chen, Phys. Chem. Chem. Phys. 17 (2015) 3309-3315.
DOI URL |
[47] |
T.K.A. Nguyen, T.T. Pham, H. Nguyen-Phu, E.W. Shin, Appl. Surf. Sci. 537 (2020) 148027.
DOI URL |
[48] |
P. Praus, A. Smýkalová, K. Foniok, V. Matějka, M. Kormunda, B. Smetana, D. Cvejn, Appl. Surf. Sci. 529 (2020) 147086.
DOI URL |
[49] |
C. Guan, J. Jiang, S. Pang, X. Chen, R.D. Webster, T.T. Lim, Chem. Eng. J. 387 (2020) 123726.
DOI URL |
[50] |
P. Jiménez-Calvo, C. Marchal, T. Cottineau, V. Caps, V. Keller, J. Mater. Chem. A 7 (2019) 14849-14863.
DOI URL |
[51] |
T.R. Chetia, M.S. Ansari, M. Qureshi, J. Mater. Chem. A 4 (2016) 5528-5541.
DOI URL |
[52] |
J. Xu, M. Fujitsuka, S. Kim, Z. Wang, T. Majima, Appl. Catal. B Environ. 241 (2019) 141-148.
DOI URL |
[53] |
J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 22 (2012) 15006-15012.
DOI URL |
[54] |
J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, Chem. Commun. 48 (2012) 12017-12019.
DOI URL |
[55] |
Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, L. Huang, Appl. Catal. B Environ. 240 (2019) 30-38.
DOI URL |
[56] |
T.T. Pham, E.W. Shin, Appl. Surf. Sci. 447 (2018) 757-766.
DOI URL |
[57] |
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
DOI URL |
[58] |
F. Fina, S.K. Callear, G.M. Carins, J.T.S. Irvine, Chem. Mater. 27 (2015) 2612-2618.
DOI URL |
[59] |
J. Xu, L. Zhang, R. Shi, Y. Zhu, J. Mater. Chem. A 1 (2013) 14766-14772.
DOI URL |
[60] |
C. Fan, Q. Feng, G. Xu, J. Lv, Y. Zhang, J. Liu, Y. Qin, Y. Wu, Appl. Surf. Sci. 427 (2018) 730-738.
DOI URL |
[61] |
L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu, Y. Jie, J. Fei, H. Ouyang, J. Ye, Appl. Catal. B Environ. 204 (2017) 335-345.
DOI URL |
[62] |
D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47 (2009) 145-152.
DOI URL |
[63] |
S. Yuan, Q. Zhang, B. Xu, S. Liu, J. Wang, J. Xie, M. Zhang, T. Ohno, Catal. Sci. Technol. 7 (2017) 1826-1830.
DOI URL |
[64] |
X. Xiao, Y. Wang, Q. Bo, X. Xu, D. Zhang, Dalton Trans. 49 (2020) 8041-8050.
DOI PMID |
[65] |
M. Jourshabani, Z. Shariatinia, A. Badiei, Langmuir 33 (2017) 7062-7078.
DOI PMID |
[66] |
T. Arumugham, R.G. Amimodu, N.J. Kaleekkal, D. Rana, J. Environ. Sci. 82 (2019) 57-69 China.
DOI URL |
[67] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
[68] |
J. Han, H.Y. Zou, M.X. Gao, C.Z. Huang, Talanta 148 (2016) 279-284.
DOI URL |
[69] |
W. Tang, Y. Tian, B. Chen, Y. Xu, B. Li, X. Jing, J. Zhang, S. Xu, ACS Appl. Mater. Interfaces 12 (2020) 6396-6406.
DOI URL |
[70] |
F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, ACS Appl. Mater. Interfaces 5 (2013) 11392-11401.
DOI URL |
[71] |
T.T. Pham, E.W. Shin, Langmuir 34 (2018) 13144-13154.
DOI URL |
[72] |
J.R. Kim, B. Santiano, H. Kim, E. Kan, Am. J. Anal. Chem. 04 (2013) 115-122.
DOI URL |
[73] |
A.A. Mohammed, S.L. Kareem, Alex. Eng. J. 58 (2019) 917-928.
DOI |
[1] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[2] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[3] | Linlin Zhang, Wenxing Peng, YaKun Li, Rui Qin, Dong Yue, Chengjun Ge, Jianjun Liao. Constructing built-in electric field in graphitic carbon nitride hollow nanospheres by co-doping and modified in-situ Ni2P for broad spectrum photocatalytic activity [J]. J. Mater. Sci. Technol., 2021, 90(0): 143-149. |
[4] | Yuanyuan Liu, Yanmei Zheng, Weijie Zhang, Zhengbin Peng, Hang Xie, YiXuan Wang, Xinli Guo, Ming Zhang, Rui Li, Ying Huang. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation [J]. J. Mater. Sci. Technol., 2021, 95(0): 127-135. |
[5] | Zheng Zhang, Yuyang Kang, Li-Chang Yin, Ping Niu, Chao Zhen, Runze Chen, Xiangdong Kang, Fayu Wu, Gang Liu. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 95(0): 167-171. |
[6] | Wei Zhao, Tiantian She, Jingyi Zhang, Guoxiang Wang, Sujuan Zhang, Wei Wei, Gang Yang, Lili Zhang, Dehua Xia, Zhipeng Cheng, Haibao Huang, Dennis Y.C. Leung. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 18-29. |
[7] | Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2021, 87(0): 207-215. |
[8] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
[9] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[10] | Vellaichamy Balakumar, Hyungjoo Kim, Ji Won Ryu, Ramalingam Manivannan, Young-A Son. Uniform assembly of gold nanoparticles on S-doped g-C3N4 nanocomposite for effective conversion of 4-nitrophenol by catalytic reduction [J]. J. Mater. Sci. Technol., 2020, 40(0): 176-184. |
[11] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[12] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[13] | Zhiliang Jin, Lijun Zhang. Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 49(0): 144-156. |
[14] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
[15] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||