J. Mater. Sci. Technol. ›› 2022, Vol. 107: 183-196.DOI: 10.1016/j.jmst.2021.07.022
• Research Article • Previous Articles Next Articles
Jie Kuanga,*(), Xiaolong Zhaoa, Yuqing Zhanga, Jinyu Zhanga,*(
), Gang Liua,*(
), Jun Suna, Guangming Xub, Zhaodong Wangb
Received:
2021-04-29
Revised:
2021-04-29
Accepted:
2021-04-29
Published:
2022-04-30
Online:
2022-04-28
Contact:
Jie Kuang,Jinyu Zhang,Gang Liu
About author:
lgsammer@mail.xjtu.edu.cn (G. Liu).Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip[J]. J. Mater. Sci. Technol., 2022, 107: 183-196.
Alloy | Mn | Fe | Si | Cu | Zn | Ti | V | Al |
---|---|---|---|---|---|---|---|---|
TRC | 1.198 | 0.519 | 0.258 | 0.099 | 0.014 | 0.020 | 0.015 | Balance |
DC | 1.261 | 0.553 | 0.097 | 0.075 | 0.010 | 0.022 | 0.006 | Balance |
Table 1 Chemical compositions (wt.%) of the Al-Mn-Fe-Si strips fabricated by TRC and DC.
Alloy | Mn | Fe | Si | Cu | Zn | Ti | V | Al |
---|---|---|---|---|---|---|---|---|
TRC | 1.198 | 0.519 | 0.258 | 0.099 | 0.014 | 0.020 | 0.015 | Balance |
DC | 1.261 | 0.553 | 0.097 | 0.075 | 0.010 | 0.022 | 0.006 | Balance |
Fig. 1. Microstructure of the as-fabricated TRC strip: (a) optical micrograph showing the grain morphology on the RD-ND plane; (b) SEM image showing the morphology of the second phase particles; (c) representative EDS result of the second phase particles.
Fig. 2. Microstructure of the as-fabricated DC strip: (a) optical micrograph showing the grain morphology on the RD-ND plane; (b) SEM image showing the morphology of the second phase particles; (c) representative EDS result of the second phase particles.
Si | Fe | Cu | Mn | |
---|---|---|---|---|
TRC surface | 0.130 | 0.234 | 0.139 | 1.319 |
TRC center | 0.103 | 0.182 | 0.070 | 1.044 |
DC | 0.040 | 0.083 | 0.118 | 0.342 |
Table 2 Solute concentrations (wt.%) of Si, Fe, Cu, and Mn.
Si | Fe | Cu | Mn | |
---|---|---|---|---|
TRC surface | 0.130 | 0.234 | 0.139 | 1.319 |
TRC center | 0.103 | 0.182 | 0.070 | 1.044 |
DC | 0.040 | 0.083 | 0.118 | 0.342 |
Fig. 3. APT results for the as-fabricated TRC strip and DC strip: (a) the surface region and (b) the center region of the TRC strip; (c) the DC strip.
Fig. 4. Dislocation densities of the as-fabricated TRC strip and the DC strip: (a) modified Williamson-Hall plots; (b) bar chart showing the values of dislocation densities obtained from (a).
Fig. 5. Optical micrographs of specimens subjected to thermal exposure at different temperatures: (a) surface region of the TRC strip; (b) center region of the TRC strip; (c) DC strip.
Fig. 6. Statistics on the grain morphology for specimens after thermal exposure at different temperatures: (a) average grain size; (b) average grain aspect ratio.
Fig. 7. (a) The electric conductivity and (b) the Mn solute concentration of the specimens after being subjected to thermal exposure at various temperatures. The empty stars in (b) represent the values given by APT.
Fig. 8. SEM images of the center region of the Al-Mn-Fe-Si strips after thermal exposure at different temperatures: (a) TRC strip; (b) DC strip in low magnification; (c) DC strip in high magnification. The red arrow points to a large particle that is being dissolved into the matrix.
Fig. 9. Statistics on the parameters of the second phase particles in the center region of the Al-Mn-Fe-Si strips after thermal exposure at different temperatures: (a) and (d) volume fraction; (b) and (e) number density; (c) and (f) average equivalent diameters. (a-c) correspond to the TRC strip; (d-f) the DC strip.
Fig. 10. Variation of tensile properties after thermal exposure at different temperatures: (a) and (c) engineering stress-strain curves; (b) and (d) tensile properties. (a) and (b) correspond to the TRC strip; (c) and (d) the DC strip.
Fig. 13. Calculations on the temperature-dependent ductility of the TRC Al-Mn-Fe-Si strips, in comparison with the experimental results. The calculations follow a normalization, where the reference ductility is defined as the ductility before thermal exposure. The experimental results are given in real values, referring to the Y-axis on the right hand side.
[1] |
E. Hornbogen, E. Starke, Acta Metall. Mater., 41 (1991), pp. 1-16.
DOI URL |
[2] | I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, Elsevier, Oxford (2005), pp. 1-15. |
[3] |
W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science, 363 (2019), pp. 972-975.
DOI URL |
[4] |
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol., 35 (2019), pp. 270-284.
DOI URL |
[5] |
L. Liu, J.T. Jiang, B. Zhang, W.Z. Shao, L. Zhen, J. Mater. Sci. Technol., 35 (2019), pp. 962-971.
DOI |
[6] | R. Guan, Y. Shen, Z. Zhao, X. Wang, J. Mater. Sci. Technol., 33 (2017), pp. 215-223. |
[7] |
Q. Lu, K. Li, H. Chen, M. Yang, X. Lan, T. Yang, S. Liu, M. Song, L. Cao, Y. Du, J. Mater. Sci. Technol., 41 (2020), pp. 139-148.
DOI URL |
[8] |
Y. Wang, S. Zhang, R. Wu, N. Turakhodjaev, L. Hou, J. Zhang, S. Betsofen, J. Mater. Sci. Technol., 61 (2021), pp. 197-203.
DOI URL |
[9] | R. Lumley, Fundamentals of Aluminum Metallurgy: Production, Processing and Applications, Woodhead Publishing, Oxford(2010), pp. 719-746. |
[10] |
M. Slamova, M. Karlık, F. Robaut, P. Slama, M. Veron, Mater. Charact., 49 (2002), pp. 231-240.
DOI URL |
[11] |
Z.T. Liu, B.Y. Wang, C. Wang, M. Zha, G.J. Liu, Z.Z. Yang, J.G. Wang, J.H. Li, H.Y. Wang, J. Mater. Sci. Technol., 41 (2020), pp. 178-186.
DOI URL |
[12] |
O. Grydin, M. Stolbchenko, F. Nürnberger, M. Schaper, J. Mater. Eng. Perform., 23 (2013), pp. 937-943.
DOI URL |
[13] |
B. Berg, V. Hansen, P. Zagierski, M. Nedreberg, A. Olsen, J. Gjønnes, J. Mater. Process. Technol., 53 (1995), pp. 65-74.
DOI URL |
[14] |
R. Song, Y. Harada, S. Kumai, Mater. Trans., 59 (2018), pp. 110-116.
DOI URL |
[15] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44 (2020), pp. 171-190.
DOI |
[16] |
J.P. Martins, A.L.M. Carvalho, A.F. Padilha, J. Mater. Sci., 44 (2009), pp. 2966-2976.
DOI URL |
[17] |
Y. Birol, J. Mater. Process. Technol., 209 (2009), pp. 506-510.
DOI URL |
[18] |
X. Zhao, J. Kuang, K. Shi, P. Zhang, H. Xue, J. Zhang, G. Liu, J. Sun, G. Xu, Z. Wang, Mater. Sci. Eng. A, 783 (2020), Article 139222.
DOI URL |
[19] |
Y. Birol, J. Alloys Compd., 458 (2008), pp. 265-270.
DOI URL |
[20] |
Y. Birol, Scr. Mater., 60 (2009), pp. 5-8.
DOI URL |
[21] |
L. Huang, G. Huang, Y. Xin, L. Cao, X. Wu, Z. Jia, Q. Li, Q. Liu, J. Mater. Sci. Technol., 33 (2017), pp. 961-970.
DOI |
[22] |
L. Huang, G. Huang, L. Cao, X. Wu, Z. Jia, M. Xia, Q. Liu, Mater. Sci. Eng. A, 682 (2017), pp. 63-72.
DOI URL |
[23] |
C. Gras, M. Meredith, J. Hunt, J. Mater. Process. Technol., 169 (2005), pp. 156-163.
DOI URL |
[24] |
B. Forbord, B. Andersson, F. Ingvaldsen, O. Austevik, J. Horst, I. Skauvik, Mater. Sci. Eng. A, 415 (2006), pp. 12-20.
DOI URL |
[25] |
M. Šlapáková, M. Zimina, S. Zaunschirm, J. Kastner, J. Bajer, M. Cieslar, Mater. Charact., 118 (2016), pp. 44-49.
DOI URL |
[26] |
X. Su, G.M. Xu, D.H. Jiang, Mater. Sci. Eng. A, 599 (2014), pp. 279-285.
DOI URL |
[27] |
G. Chen, T. You, G. Xu, Appl. Phys. A, 124 (2017), p. 28.
DOI URL |
[28] |
G. Chen, J.T. Li, Z.K. Yin, G.M. Xu, Mater. Charact., 127 (2017), pp. 325-332.
DOI URL |
[29] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater., 187 (2020), pp. 51-65.
DOI URL |
[30] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater., 187 (2020), pp. 262-267.
DOI URL |
[31] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol., 65 (2021), pp. 190-201.
DOI URL |
[32] |
J. Xu, Y. Li, K. Ma, Y. Fu, E. Guo, Z. Chen, Q. Gu, Y. Han, T. Wang, Q. Li, Scr. Mater., 187 (2020), pp. 142-147.
DOI URL |
[33] |
H.T. Li, Y. Wang, Z. Fan, Acta Mater., 60 (2012), pp. 1528-1537.
DOI URL |
[34] |
J.T. Li, G.M. Xu, H.L. Yu, G. Chen, H.J. Li, C. Lu, J.Y. Guo, Int. J. Adv. Manuf. Technol., 85 (2015), pp. 1007-1017.
DOI URL |
[35] | C. Shi, K. Shen, Int. J. Lightweight Mater.Manuf., 1 (2018), pp. 108-114. |
[36] |
N.S. Barekar, S. Das, X. Yang, Y. Huang, O.E. Fakir, A.G. Bhagurkar, L. Zhou, Z. Fan, Mater. Sci. Eng. A, 650 (2016), pp. 365-373.
DOI URL |
[37] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des., 16 (2016), pp. 2404-2415.
DOI URL |
[38] |
T. Ungár, S. Ott, P. Sanders, A. Borbély, J. Weertman, Acta Mater., 46 (1998), pp. 3693-3699.
DOI URL |
[39] |
G. Williamson, R. Smallman, Philos. Mag., 1 (1956), pp. 34-46.
DOI URL |
[40] | T.H. Simm, P.J. Withers, J. Quinta da Fonseca, Mater.Des., 111 (2016), pp. 331-343. |
[41] | L. Liu, Q. Yu, Z. Wang, J. Ell, M. Huang, R.O. Ritchie, Science, 368 (2020), pp. 1347-1352. |
[42] |
B. He, B. Hu, H. Yen, G. Cheng, Z. Wang, H. Luo, M. Huang, Science, 357 (2017), pp. 1029-1032.
DOI PMID |
[43] |
M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, M.X. Huang, Acta Mater., 201 (2020), pp. 102-113.
DOI URL |
[44] |
Y.J. Li, L. Arnberg, Acta Mater., 51 (2003), pp. 3415-3428.
DOI URL |
[45] | M.M.R. Jaradeh, T. Carlberg, J. Mater. Sci. Technol., 27 (2011), pp. 615-627. |
[46] |
V.M. Nadutov, A.I. Ustinov, S.A. Demchenkov, Y.O. Svystunov, V.S. Skorodzievski, J. Mater. Sci. Technol., 31 (2015), pp. 1079-1086.
DOI |
[47] |
T. Ungár, I. Dragomir, á. Révész, A. Borbély, J. Appl. Crystallogr., 32 (1999), pp. 992-1002.
DOI URL |
[48] | Y. Li, M. Huang, Acta Metall. Sin., 56 (2020), pp. 487-493. |
[49] | K. Huang, K. Marthinsen, Q. Zhao, R. Logé, Prog. Mater. Sci., 92 (2018), pp. 300-328. |
[50] |
M. Zha, H.M. Zhang, X.T. Meng, H.L. Jia, S.B. Jin, G. Sha, H.Y. Wang, Y.J. Li, H.J. Roven, J. Mater. Sci. Technol., 89 (2021), pp. 141-149.
DOI URL |
[51] |
J.W. Cahn, Acta Metall., 10 (1962), pp. 789-798.
DOI URL |
[52] | K. Lücke, H. Stüwe, Recovery and Recrystallization of Metals, Interscience, New York (1963), pp. 171-209. |
[53] |
K. Lücke, H. Stüwe, Acta Metall., 19 (1971), pp. 1087-1099.
DOI URL |
[54] |
E. Nes, N. Ryum, O. Hunderi, Acta Metall., 33 (1985), pp. 11-22.
DOI URL |
[55] | F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena,(2nd ed.), Elsevier, Oxford(2004), pp. 121-168. |
[56] | A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials, Oxford Science Publications, Oxford(1995), p. 819. |
[57] |
Y.J. Li, A.M.F. Muggerud, A. Olsen, T. Furu, Acta Mater., 60 (2012), pp. 1004-1014.
DOI URL |
[58] | L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading(1975), p. 131. |
[59] |
A. Lens, C. Maurice, J.H. Driver, Mater. Sci. Eng. A, 403 (2005), pp. 144-153.
DOI URL |
[60] | G. Gottstein, Physical Foundations of Materials Science, Springer-Verlag, Berlin(2013), pp. 155-196. |
[61] | H. Bakker, Diffusion in Solid Metals and Alloys, Springer-Verlag, Berlin(1990). |
[62] |
R.K.W. Marceau, A.de Vaucorbeil, G. Sha, S.P. Ringer, W.J. Poole, Acta Mater., 61 (2013), pp. 7285-7303.
DOI URL |
[63] |
G.P.M. Leyson, L.G. Hector, W.A. Curtin, Acta Mater., 60 (2012), pp. 3873-3884.
DOI URL |
[64] |
F. Qian, S. Jin, G. Sha, Y. Li, Acta Mater., 157 (2018), pp. 114-125.
DOI URL |
[65] |
G. Liu, G. Zhang, X. Ding, J. Sun, K. Chen, Mater. Sci. Eng. A, 344 (2003), pp. 113-124.
DOI URL |
[66] |
G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Mater. Sci. Technol., 19 (2003), pp. 887-896.
DOI URL |
[67] |
G. Liu, G. Zhang, X. Ding, J. Sun, K. Chen, Metall. Mater. Trans. A, 35 (2004), pp. 1725-1734.
DOI URL |
[68] |
G. Liu, J. Sun, C.W. Nan, K.H. Chen, Acta Mater., 53 (2005), pp. 3459-3468.
DOI URL |
[69] |
G. Liu, G. Zhang, R. Wang, W. Hu, J. Sun, K. Chen, Acta Mater., 55 (2007), pp. 273-284.
DOI URL |
[70] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater., 12 (2013), pp. 344-350.
DOI PMID |
[1] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[2] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[3] | Yong Li, David San Martín, Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91(0): 200-214. |
[4] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[5] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[6] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[7] | Milad Ghayoor, Saereh Mirzababaei, Anumat Sittiho, Indrajit Charit, Brian K. Paul, Somayeh Pasebani. Thermal stability of additively manufactured austenitic 304L ODS alloy [J]. J. Mater. Sci. Technol., 2021, 83(0): 208-218. |
[8] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[9] | Junyuan Bai, Hongbo Xie, Xueyong Pang, Guo Yuan, Lei Wang, Yuping Ren, Gaowu Qin. Nucleation and growth mechanisms of γ’’ phase with single-unit-cell height in Mg-RE-Zn(Ag) series alloys: a first-principles study [J]. J. Mater. Sci. Technol., 2021, 79(0): 133-140. |
[10] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[11] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[12] | Min Zha, Hong-Min Zhang, Xiang-Tao Meng, Hai-Long Jia, Shen-Bao Jin, Gang Sha, Hui-Yuan Wang, Yan-Jun Li, Hans J. Roven. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation [J]. J. Mater. Sci. Technol., 2021, 89(0): 141-149. |
[13] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[14] | Yongbin Hua, Jae Su Yu. Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination [J]. J. Mater. Sci. Technol., 2020, 54(0): 230-239. |
[15] | Long Zhang, Yi Wu, Shidong Feng, Wen Li, Hongwei Zhang, Huameng Fu, Hong Li, Zhengwang Zhu, Haifeng Zhang. Rejuvenated metallic glass strips produced via twin-roll casting [J]. J. Mater. Sci. Technol., 2020, 38(0): 73-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||