J. Mater. Sci. Technol. ›› 2022, Vol. 110: 167-177.DOI: 10.1016/j.jmst.2021.09.005
• Research Article • Previous Articles Next Articles
Xiaolin Lia, Xiaoxiao Haoa, Chi Jina, Qi Wangb, Xiangtao Dengb,*(), Haifeng Wanga,*(
), Zhaodong Wangb
Received:
2021-06-08
Revised:
2021-08-30
Accepted:
2021-09-01
Published:
2021-10-08
Online:
2021-10-08
Contact:
Xiangtao Deng,Haifeng Wang
About author:
haifengw81@nwpu. edu.cn (H. Wang).Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 110: 167-177.
Alloy | Fe | Mn | Co | Cr | C |
---|---|---|---|---|---|
Nominal Composition | 49.50 | 29.70 | 9.90 | 9.90 | 1.00 |
Actual Composition | 48.98 | 31.00 | 8.55 | 10.55 | 0.92 |
Table 1. The chemical composition of the C-coped iHEA (at.%) obtained by chemical analysis and mass spectrometer.
Alloy | Fe | Mn | Co | Cr | C |
---|---|---|---|---|---|
Nominal Composition | 49.50 | 29.70 | 9.90 | 9.90 | 1.00 |
Actual Composition | 48.98 | 31.00 | 8.55 | 10.55 | 0.92 |
Fig. 2. Microstructures and phase analysis of the C-doped iHEA. (a-c) EBSD phase map for and (d) XRD patterns of the specimens annealed at 650, 800 and 900 °C for 1 h.
Heat treatment | YS/MPa | UTS/MPa | UE/% |
---|---|---|---|
650 °C | 666 | 986 | 27 |
800 °C | 526 | 948 | 35 |
900 °C | 367 | 806 | 48 |
Table 2. The mechanical properties at room temperature of C-coped iHEA (at.%) annealed at different temperatures.
Heat treatment | YS/MPa | UTS/MPa | UE/% |
---|---|---|---|
650 °C | 666 | 986 | 27 |
800 °C | 526 | 948 | 35 |
900 °C | 367 | 806 | 48 |
Fig. 7. EBSD maps showing the microstructure evolution of the C-coped iHEA annealed at 800 °C at different strain levels (0, 2%, 20%, 35%) during tensile deformation. (a1-d1) Phase figures; (a2-d2) The kernel average misorientation (KAM) diagram; (a3-d3) The inverse pole figure (IPF); (d4, d5) The inverse pole figure and pole figure showing the orientation relationship between HCP and FCC phase. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
Fig. 8. Evolution of (a) phase fraction and (b) boundary fractions of the C-coped iHEA obtained by EBSD analysis at different strain levels; EBSD image quality maps with grain boundary misorientation distribution of FCC (c) and HCP (d) phase formed in the specimen with 35% tensile strain. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
Fig. 10. TEM images of the C-doped iHEA annealed at 800 °C interrupted at 2% strain during the tensile deformation. (a, b) BF images of the precipitates, dislocations and SFs; (c) dislocation cells in grains with zone axis of [0.11¯] (d, e) DF images by the two beam diffraction in different g vectors; (f, g) BF and DF images showing the dislocations and stacking faults. (DS: dislocation; SF: stacking fault).
Fig. 11. Typical TEM images of the C-coped iHEA annealed at 800 °C interrupted at 20% strain during the tensile deformation. (a) BF images of thin plates; (b) SAED patterns of the region in yellow boxes in Fig.(a); (c) DF image of HCP phase using [$11\bar{2}0$]HCPreflection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Typical TEM images of the C-coped iHEA annealed at 800 °C interrupted at 35% strain during the tensile deformation. (a) BF images; (b) SAED pattern; (c, d) DF images showing the nano-twin and HCP phase; (e) HRTEM image showing the FCC and HCP phases; (f) HETEM image of deformation twins.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[3] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
[4] |
R. Kozak, A. Sologubenko, W. Steurer, Z. Kristallogr. Cryst. Mater. 230 (2015) 55-68.
DOI URL |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[6] |
J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chou, Metall. Mater. Trans. A 35 (2004) 2533-2536.
DOI URL |
[7] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 (2013) 4887-4897.
DOI URL |
[8] |
Z.M. Li, D. Raabe, JOM 69 (11) (2017) 2099-2106.
DOI URL |
[9] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[10] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[11] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[12] |
Z.M. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131 (2017) 323-335.
DOI URL |
[13] |
M.M. Wang, Z.M. Li, D. Raabe, Acta Mater. 147 (2018) 236-246.
DOI URL |
[14] | S. Basu, Z.M. Li, K.G. Pradeep, D. Raabe, Front. Mater. 5 (2018). |
[15] |
J. Su, X.X. Wu, D. Raabe, Z.M. Li, Acta Mater. 167 (2019) 23-39.
DOI URL |
[16] |
Z.M. Li, F. Kormann, B. Grabowski, J. Neugebauer, D. Raabe, Acta Mater. 136 (2017) 262-270.
DOI URL |
[17] |
Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun. 8 (2017) 15719.
DOI URL |
[18] |
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
[19] |
Z. Wu, C.M. Parish, H. Bei, J. Alloy. Compd. 647 (2015) 815-822.
DOI URL |
[20] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[21] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[22] | D. Liang, C. Zhao, W. Zhu, P. Wei, F. Jiang, Y. Zhang, Q. Sun, F. Ren, Mater. Sci. Eng. A (2019) 762. |
[23] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[24] |
C.S. Yoo, Y.M. Park, Y.S. Jung, Y.K. Lee, Scr. Mater. 59 (2008) 71-74.
DOI URL |
[25] |
Z.W. Wang, W.J. Lu, D. Raabe, Z.M. Li, J. Alloy. Compd. 781 (2019) 734-743.
DOI URL |
[26] |
J. Su, D. Raabe, Z.M. Li, Acta Mater. 163 (2019) 40-54.
DOI URL |
[27] | Z.M. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) 40704. |
[28] |
J.B. Seol, J.W. Bae, Z.M. Li, J.Chan Han, J.G. Kim, D. Raabe, H.S. Kim, Acta Mater. 151 (2018) 366-376.
DOI URL |
[29] |
Z.W. Wang, I. Baker, Z.H. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater. 120 (2016) 228-239.
DOI URL |
[30] |
S.Y. Zhu, D.S. Yan, K.F. Gan, W.J. Lu, Z.M. Li, Scr. Mater. 191 (2021) 96-100.
DOI URL |
[31] | W.Y. Zhang, D.S. Yan, W.J. Lu, Z.M. Li, J. Alloy. Compd. 831 (2020). |
[32] |
J. Kottke, M. Laurent-Brocq, A. Fareed, D. Gaertner, L. Perrière, Ł. Rogal, S.V. Di- vinski, G. Wilde, Scr. Mater. 159 (2019) 94-98.
DOI URL |
[33] |
R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, H. Maza, Mater. Charact. 59 (2008) 447-453.
DOI URL |
[34] |
T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 311 (2001) 28-41.
DOI URL |
[35] |
J. Dash, H.M. Otte, Acta Metall. 11 (1963) 1169-1178.
DOI URL |
[36] |
H. Fujita, S. Ueda, Acta Metall. 20 (1972) 759-767.
DOI URL |
[37] |
S. Mahajan, M.L. Green, D. Brasen, Metall. Trans. A 8 (1977) 283-293.
DOI URL |
[38] |
M. Wu, Z.M. Li, B. Gault, P. Munroe, I. Baker, Mater. Sci. Eng. A 748 (2019) 59-73.
DOI URL |
[39] |
C.C. Tasan, J. P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe, Int. J. Plast. 63 (2014) 198-210.
DOI URL |
[40] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.
DOI URL |
[41] |
L. Remy, Acta Metall. 26 (1978) 443-451.
DOI URL |
[42] |
H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, P.J. Jacques, Scr. Mater. 60 (2009) 941-944.
DOI URL |
[43] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129-5141.
DOI URL |
[44] |
G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43 (2003) 438-446.
DOI URL |
[45] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[46] |
H. Kwon, J. Moon, J.W. Bae, J.M. Park, S. Son, H.S. Do, B.J. Lee, H.S. Kim, Scr. Mater. 188 (2020) 140-145.
DOI URL |
[47] |
T. Gladman, Mater. Sci. Technol. 15 (2013) 30-36.
DOI URL |
[48] |
X.L. Li, C.S. Lei, X.T. Deng, Y.M. Li, Y. Tian, Z.D. Wang, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 1067-1079.
DOI URL |
[1] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[2] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[3] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[4] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[5] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[6] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[7] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[8] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[9] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[10] | Guo Fei, Huang Weijiu, Yang Xusheng, Dong Haipeng, Yu Hang, Chen Qiuyu, Hu Li, Jiang Luyao. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[11] | Ji Pengfei, Chen Bohan, Liu Shuguang, Li Bo, Xia Chaoqun, Zhang Xinyu, Ma Mingzhen, Liu Riping. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[12] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[13] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[14] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[15] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||