J. Mater. Sci. Technol. ›› 2022, Vol. 109: 282-296.DOI: 10.1016/j.jmst.2021.08.084
• Research Article • Previous Articles
Mohammed Arroussia,b, Qing Jiaa, Chunguang Baia,*(), Shuyuan Zhanga,b, Jinlong Zhaoa,b, Zhizhou Xiaa,b, Zhiqiang Zhanga, Ke Yanga,*(
), Rui Yanga
Received:
2021-04-17
Revised:
2021-08-14
Accepted:
2021-08-26
Published:
2021-11-09
Online:
2021-11-09
Contact:
Chunguang Bai,Ke Yang
About author:
kyang@imr.ac.cn (K. Yang).Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2022, 109: 282-296.
Samples | Al | V | Fe | Cu | H | C | N | O | Ti |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V-5Cu alloy | 6.03 | 4.15 | 0.17 | 5.26 | 0.001 | 0.014 | 0.0063 | 0.1 | Bal. |
Ti6Al4V alloy | 6.40 | 4.08 | 0.16 | 0.001 | 0.0028 | 0.0087 | 0.009 | 0.12 | Bal. |
Table 1. Actual chemical compositions (wt%) of Ti6Al4V-5Cu and Ti6Al4V alloy.
Samples | Al | V | Fe | Cu | H | C | N | O | Ti |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V-5Cu alloy | 6.03 | 4.15 | 0.17 | 5.26 | 0.001 | 0.014 | 0.0063 | 0.1 | Bal. |
Ti6Al4V alloy | 6.40 | 4.08 | 0.16 | 0.001 | 0.0028 | 0.0087 | 0.009 | 0.12 | Bal. |
Fig. 1. Typical photographs of P. aeruginosa biofilm and planktonic colonization for Ti6Al4V-5Cu and Ti6Al4V alloys after 24 h and 7 days of incubation.
Fig. 2. SEM images of P. aeruginosa cells morphology and biofilms on the surfaces of Ti6Al4V after 7 days (a), 14 days (b), and Ti6Al4V-5Cu after 7 days (c) and 14 days (d).
Fig. 3. Variations of Rp for Ti6Al4V-5Cu and Ti6Al4V coupons during 14 days of incubation in different culture media, where error bars introduce the standard deviations of three replicate measurements.
Fig. 4. Nyquist and Bode plots of Ti6Al4V-5Cu and Ti6Al4V alloys: (a, a’) Ti6Al4V-5Cu in the biotic medium, (b, b’) Ti6Al4V in the biotic medium, (c, c’) Ti6Al4V-5Cu in the sterile medium, and (d, d’) Ti6Al4V in the sterile medium.
Duration (day) | Rs (Ω cm2) | Qf (10-5 Ω-1 Sn cm-2) | nf | Rf (Ω cm2) | Qdl (10-5 Ω-1 Sn cm-2) | ndl | Rct (MΩ cm2) | χ2 × 10-4 |
---|---|---|---|---|---|---|---|---|
Ti6Al4V-5Cu in the presence of P. aeruginosa | ||||||||
1 | 8.85 ± 0.42 | 1.42 | 0.94 | 6.22 ± 0.15 | 1.41 | 0.91 | 1.848 ± 0.03 | 1.33 |
2 | 9.60 ± 0.33 | 1.44 | 0.92 | 9.11 ± 0.38 | 0.69 | 0.91 | 7.338 ± 0.35 | 0.72 |
4 | 9.65 ± 0.23 | 3.06 | 0.88 | 588 ± 20.4 | 0.25 | 0.92 | 5.119 ± 0.08 | 0.71 |
7 | 8.74 ± 0.36 | 2.87 | 0.87 | 801 ± 49.0 | 0.17 | 0.90 | 6.859 ± 0.19 | 1.61 |
14 | 9.12 ± 0.38 | 2.27 | 0.89 | 328 ± 36.0 | 0.14 | 0.96 | 6.624 ± 0.13 | 2.00 |
Ti6Al4V in the presence of P. aeruginosa | ||||||||
1 | 6.06 ± 0.71 | 28.1 | 0.57 | 1.133 ± 0.15 | 3.13 | 0.90 | 5.911 ± 0.11 | 0.36 |
2 | 6.07 ± 0.20 | 8.62 | 0.69 | 39.12 ± 2.5 | 3.90 | 0.90 | 1.869 ± 0.03 | 0.41 |
4 | 6.48 ± 0.43 | 7.77 | 0.80 | 468.5 ± 25.1 | 0.39 | 0.89 | 0.317 ± 0.02 | 1.97 |
7 | 7.21 ± 0.64 | 3.68 | 0.86 | 167.2 ± 36.0 | 0.41 | 0.93 | 3.169 ± 0.19 | 5.21 |
14 | 7.89 ± 0.61 | 3.19 | 0.87 | 474.6 ± 40.6 | 0.22 | 0.93 | 4.533 ± 0.22 | 4.98 |
Ti6Al4V-5Cu in the sterile medium | ||||||||
1 | 11.8 ± 0.74 | - | - | - | 2.85 | 0.92 | 3.250 ± 0.14 | 1.10 |
2 | 12.1 ± 0.67 | - | - | - | 2.47 | 0.92 | 8.447 ± 0.29 | 8.88 |
4 | 11.5 ± 0.47 | - | - | - | 1.22 | 0.80 | 7.428 ± 0.35 | 3.10 |
7 | 11.2 ± 1.54 | - | - | - | 2.89 | 0.92 | 4.811 ± 0.01 | 1.08 |
14 | 10.9 ± 0.31 | - | - | - | 3.63 | 0.87 | 3.491 ± 0.09 | 1.75 |
Ti6Al4V in the sterile medium | ||||||||
1 | 14.8 ± 0.37 | - | - | - | 2.90 | 0.93 | 1.793 ± 0.04 | 2.98 |
2 | 15.9 ± 3.26 | - | - | - | 2.38 | 0.93 | 3.671 ± 0.61 | 2.20 |
4 | 17.8 ± 2.99 | - | - | - | 2.11 | 0.93 | 6.817 ± 0.91 | 1.83 |
7 | 15.2 ± 1.82 | - | - | - | 2.82 | 0.89 | 8.507 ± 0.98 | 0.64 |
14 | 16.8 ± 0.26 | - | - | - | 2.65 | 0.89 | 5.005 ± 0.42 | 1.31 |
Table 2. EIS fitting results for Ti6Al4V-5Cu and Ti6Al4V alloys immersed in abiotic and biotic media.
Duration (day) | Rs (Ω cm2) | Qf (10-5 Ω-1 Sn cm-2) | nf | Rf (Ω cm2) | Qdl (10-5 Ω-1 Sn cm-2) | ndl | Rct (MΩ cm2) | χ2 × 10-4 |
---|---|---|---|---|---|---|---|---|
Ti6Al4V-5Cu in the presence of P. aeruginosa | ||||||||
1 | 8.85 ± 0.42 | 1.42 | 0.94 | 6.22 ± 0.15 | 1.41 | 0.91 | 1.848 ± 0.03 | 1.33 |
2 | 9.60 ± 0.33 | 1.44 | 0.92 | 9.11 ± 0.38 | 0.69 | 0.91 | 7.338 ± 0.35 | 0.72 |
4 | 9.65 ± 0.23 | 3.06 | 0.88 | 588 ± 20.4 | 0.25 | 0.92 | 5.119 ± 0.08 | 0.71 |
7 | 8.74 ± 0.36 | 2.87 | 0.87 | 801 ± 49.0 | 0.17 | 0.90 | 6.859 ± 0.19 | 1.61 |
14 | 9.12 ± 0.38 | 2.27 | 0.89 | 328 ± 36.0 | 0.14 | 0.96 | 6.624 ± 0.13 | 2.00 |
Ti6Al4V in the presence of P. aeruginosa | ||||||||
1 | 6.06 ± 0.71 | 28.1 | 0.57 | 1.133 ± 0.15 | 3.13 | 0.90 | 5.911 ± 0.11 | 0.36 |
2 | 6.07 ± 0.20 | 8.62 | 0.69 | 39.12 ± 2.5 | 3.90 | 0.90 | 1.869 ± 0.03 | 0.41 |
4 | 6.48 ± 0.43 | 7.77 | 0.80 | 468.5 ± 25.1 | 0.39 | 0.89 | 0.317 ± 0.02 | 1.97 |
7 | 7.21 ± 0.64 | 3.68 | 0.86 | 167.2 ± 36.0 | 0.41 | 0.93 | 3.169 ± 0.19 | 5.21 |
14 | 7.89 ± 0.61 | 3.19 | 0.87 | 474.6 ± 40.6 | 0.22 | 0.93 | 4.533 ± 0.22 | 4.98 |
Ti6Al4V-5Cu in the sterile medium | ||||||||
1 | 11.8 ± 0.74 | - | - | - | 2.85 | 0.92 | 3.250 ± 0.14 | 1.10 |
2 | 12.1 ± 0.67 | - | - | - | 2.47 | 0.92 | 8.447 ± 0.29 | 8.88 |
4 | 11.5 ± 0.47 | - | - | - | 1.22 | 0.80 | 7.428 ± 0.35 | 3.10 |
7 | 11.2 ± 1.54 | - | - | - | 2.89 | 0.92 | 4.811 ± 0.01 | 1.08 |
14 | 10.9 ± 0.31 | - | - | - | 3.63 | 0.87 | 3.491 ± 0.09 | 1.75 |
Ti6Al4V in the sterile medium | ||||||||
1 | 14.8 ± 0.37 | - | - | - | 2.90 | 0.93 | 1.793 ± 0.04 | 2.98 |
2 | 15.9 ± 3.26 | - | - | - | 2.38 | 0.93 | 3.671 ± 0.61 | 2.20 |
4 | 17.8 ± 2.99 | - | - | - | 2.11 | 0.93 | 6.817 ± 0.91 | 1.83 |
7 | 15.2 ± 1.82 | - | - | - | 2.82 | 0.89 | 8.507 ± 0.98 | 0.64 |
14 | 16.8 ± 0.26 | - | - | - | 2.65 | 0.89 | 5.005 ± 0.42 | 1.31 |
Day | 2 | 4 | 7 | 14 |
---|---|---|---|---|
ηi(%) | 74.52 | 93.79 | 53.79 | 31.56 |
Table 3. Inhibition based-efficiency of Ti6Al4V-5Cu alloy against P. aeruginosa.
Day | 2 | 4 | 7 | 14 |
---|---|---|---|---|
ηi(%) | 74.52 | 93.79 | 53.79 | 31.56 |
Fig. 5. Polarization curves of Ti6Al4V-5Cu and Ti6Al4V alloys in the biotic and abiotic media after 14 days of incubation (a), high resolution for Tafel-extrapolation on the cathodic region (b).
Samples | Ecorr (mV vs. SCE) | icorr (nA cm-2) | Epit (V) vs. SCE | IE (%) |
---|---|---|---|---|
Ti6Al4V-5Cu in the biotic medium | -211.01 ± 18 | 8.40 ± 0.5 | 1.28 ± 0.01 | 70.62 |
Ti6Al4V in the biotic medium | -344.99 ± 13 | 28.6 ± 3.8 | 1.18 ± 0.02 | - |
Ti6Al4V-5Cu in the sterile medium | -359.81 ± 4 | 4.52 ± 0.3 | 1.30 ± 0.01 | - |
Ti6Al4V in the sterile medium | -389.70 ± 2 | 3.09 ± 0.1 | 1.47 ± 0.05 | - |
Table 4. Corrosion parameters obtained from polarization curves of Ti6Al4V-5Cu and Ti6Al4V alloys after 14 days of incubation (Standard deviations were calculated from three replicate tests).
Samples | Ecorr (mV vs. SCE) | icorr (nA cm-2) | Epit (V) vs. SCE | IE (%) |
---|---|---|---|---|
Ti6Al4V-5Cu in the biotic medium | -211.01 ± 18 | 8.40 ± 0.5 | 1.28 ± 0.01 | 70.62 |
Ti6Al4V in the biotic medium | -344.99 ± 13 | 28.6 ± 3.8 | 1.18 ± 0.02 | - |
Ti6Al4V-5Cu in the sterile medium | -359.81 ± 4 | 4.52 ± 0.3 | 1.30 ± 0.01 | - |
Ti6Al4V in the sterile medium | -389.70 ± 2 | 3.09 ± 0.1 | 1.47 ± 0.05 | - |
Fig. 6. CLSM images of largest pits depth measured on surfaces of Ti6Al4V-5Cu (a) and Ti6Al4V alloy (b) in the biotic medium, and scan profiles for Ti6Al4V-5Cu (c) and Ti6Al4V alloy (d) in the abiotic medium after 14 days of incubation.
Fig. 7. XPS spectra of Ti 2p on the surfaces (without sputtering) of Ti6Al4V-5Cu and Ti6Al4V alloys after 14 days of incubation in different culture media: (a) Ti6Al4V-5Cu in the abiotic medium, (b) Ti6Al4V in the abiotic medium, (c) Ti6Al4V-5Cu in the biotic medium, (d) Ti6Al4V in the biotic medium.
Fig. 8. XPS spectra at various sputtering depths (from 0 to 18 nm) for Ti6Al4V-5Cu and Ti6Al4V alloys (marked in the figure) immersed in biotic medium for 14 days: (a, d) Ti 2p binding energy-region, (b, e) Al 2p region, (c, f) V 2p region.
Fig. 9. Passive films analysis of Ti 2p region for (a-c) Ti6Al4V-5Cu alloy, (d-f) Ti6Al4V alloy at the sputtering depth of (a, d) 0 nm, (b, e) 6 nm. (c) and (f) represent the content of the corresponding oxide at the sputtering thickness of 6 nm.
Fig. 10. Quantitative analysis of Cu 2p (at the sputtering depth of 6 nm) for sample immersed in the biotic medium for different time: (a) 1 day, (b), 7 days, and (c) 14 days.
Samples | D (mg cm-2) | δ (%) |
---|---|---|
Ti6Al4V-5Cu alloy | 18.500 ± 0.2 | 70.58 |
Ti6Al4V alloy | 62.23 ± 2.0 | - |
Table 5. Weight loss results for samples exposed to biotic medium for 2.5 months.
Samples | D (mg cm-2) | δ (%) |
---|---|---|
Ti6Al4V-5Cu alloy | 18.500 ± 0.2 | 70.58 |
Ti6Al4V alloy | 62.23 ± 2.0 | - |
Samples | Sa (nm) | Sq (nm) |
---|---|---|
Ti6Al4V-5Cu alloy | 80.7 | 109 |
Ti6Al4V alloy | 103 | 144 |
Table 6. Surface roughness parameters of samples exposed to biotic medium for 2.5 months.
Samples | Sa (nm) | Sq (nm) |
---|---|---|
Ti6Al4V-5Cu alloy | 80.7 | 109 |
Ti6Al4V alloy | 103 | 144 |
[1] |
K.M. Usher, A.H. Kaksonen, I. Cole, D. Marney, Int. Biodeterior. Biodegrad. 93 (2014) 84-106.
DOI URL |
[2] |
B.J. Little, D.J. Blackwood, J. Hinks, F.M. Lauro, E. Marsili, A. Okamoto, S.A. Rice, S.A. Wade, H.C. Flemming, Corros. Sci. 170 (2020) 108641.
DOI URL |
[3] |
J.F.D. Stott, Corros. Sci. 35 (1993) 667-673.
DOI URL |
[4] |
Y. Lekbach, Z. Li, D. Xu, S. El Abed, Y. Dong, D. Liu, T. Gu, S.I. Koraichi, K. Yang, F. Wang, Bioelectrochemistry 128 (2019) 193-203.
DOI PMID |
[5] |
Y. Lekbach, D. Xu, S. El Abed, Y. Dong, D. Liu, M.S. Khan, S. Ibnsouda Koraichi, K. Yang, Int. Biodeterior. Biodegrad. 133 (2018) 159-169.
DOI URL |
[6] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
[7] |
S. Yan, G.L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch, L. Zhou, J. Mater. Sci. Technol. 34 (2018) 421-435.
DOI URL |
[8] |
Y. Lekbach, Y. Dong, Z. Li, D. Xu, S. El Abed, Y. Yi, L. Li, S. Ibnsouda Koraichi, T. Sun, F. Wang, Corros. Sci. 157 (2019) 98-108.
DOI |
[9] |
L. Yin, D. Xu, C. Yang, T. Xi, X. Chen, K. Yang, Corros. Sci. 179 (2021) 109141.
DOI URL |
[10] |
F. Batmanghelich, L. Li, Y. Seo, Corros. Sci. 121 (2017) 94-104.
DOI URL |
[11] |
M.S. Khan, Z. Li, K. Yang, D. Xu, C. Yang, D. Liu, Y. Lekbach, E. Zhou, P. Kalnaowakul, J. Mater. Sci. Technol. 35 (2019) 216-222.
DOI URL |
[12] |
N.O. San, H. Nazır, G. Dönmez, Corros. Sci. 79 (2014) 177-183.
DOI URL |
[13] |
E. Hamzah, M.Z. Hussain, Z. Ibrahim, A. Abdolahi, Corros. Eng. Sci Technol. 48 (2013) 116-120.
DOI URL |
[14] | E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeterior. Biode-grad. 127 (2018) 1-9. |
[15] |
R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137 (2019) 42-58.
DOI URL |
[16] | T. Gu, D. Wang, Y. Lekbach, D. Xu, Curr. Opin. Electrochem. 29 (2021) 100763. |
[17] |
Z. Li, W. Chang, T. Cui, D. Xu, D. Zhang, Y. Lou, H. Qian, H. Song, A. Mol, F. Cao, Commun. Mater. 2 (2021) 1-9.
DOI URL |
[18] |
Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Electrochem. Commun. 94 (2018) 9-13.
DOI URL |
[19] |
L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang, D. Zhang, Corros. Sci. 164 (2020) 108355.
DOI URL |
[20] |
Y. Lekbach, T. Liu, Y. Li, M. Moradi, W. Dou, D. Xu, J.A. Smith, D.R. Lovley, Adv. Microb. Physiol. 78 (2021) 317-390.
DOI PMID |
[21] | H.Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, T.L. Woodard, D.E. Holmes, T. Gu, F. Wang, D.R. Lovley, ISME J. (2021) 1-10. |
[22] | H.Y. Tang, D.E. Holmes, T. Ueki, P.A. Palacios, D.R. Lovley, MBio 10 (2019) e00303-e00319. |
[23] |
X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145 (2018) 80-89.
DOI URL |
[24] |
I. Milosev, M. Metikos-Huković, H.H. Strehblow, Biomaterials 21 (2000) 2103-2113.
DOI PMID |
[25] |
A. Fukushima, G. Mayanagi, K. Nakajo, K. Sasaki, N. Takahashi, J. Dent. Res. 93 (2014) 525-529.
DOI PMID |
[26] |
Z. Li, J. Wang, Y. Dong, D. Xu, X. Zhang, J. Wu, T. Gu, F. Wang, J. Mater. Sci. Technol. 71 (2021) 177-185.
DOI URL |
[27] |
D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, D. Xu, F. Wang, J.A. Smith, J. Mater. Sci. Technol. 79 (2021) 101-108.
DOI URL |
[28] |
J. Souza, M. Henriques, R. Oliveira, W. Teughels, J.P. Celis, L. Rocha, Biofouling 26 (2010) 471-478.
DOI PMID |
[29] |
T. Rao, A.J. Kora, B. Anupkumar, S. Narasimhan, R. Feser, Corros. Sci. 47 (2005) 1071-1084.
DOI URL |
[30] |
L. Vedaprakash, R. Dineshram, K. Ratnam, K. Lakshmi, K. Jayaraj, S.M. Babu, R. Venkatesan, A. Shanmugam, Colloids Surf. B 106 (2013) 1-10.
DOI URL |
[31] |
D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M.S. Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater. Sci. Technol. 35 (2019) 2494-2502.
DOI |
[32] |
D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34 (2018) 1325-1336.
DOI URL |
[33] |
Y. Dong, J. Li, D. Xu, G. Song, D. Liu, H. Wang, M.S. Khan, K. Yang, F. Wang, J. Mater. Sci. Technol. 64 (2021) 176-186.
DOI URL |
[34] |
H. Zhao, Y. Sun, L. Yin, Z. Yuan, Y. Lan, D. Xu, C. Yang, K. Yang, J. Mater. Sci. Technol. 66 (2021) 112-120.
DOI URL |
[35] |
L. Yin, T. Xi, C. Yang, J. Zhao, Y. Sun, H. Zhao, K. Yang, Front. Mater. 7 (2020) 102.
DOI URL |
[36] |
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, K. Yang, J. Mater. Sci. Technol. 30 (2014) 699-705.
DOI URL |
[37] |
C. Peng, S. Zhang, Z. Sun, L. Ren, K. Yang, Mater. Sci. Eng C 93 (2018) 495-504.
DOI URL |
[38] |
Z. Ma, L. Ren, R. Liu, K. Yang, Y. Zhang, Z. Liao, W. Liu, M. Qi, R.D.K. Misra, J. Mater. Sci. Technol. 31 (2015) 723-732.
DOI URL |
[39] |
C. Peng, Y. Liu, H. Liu, S. Zhang, C. Bai, Y. Wan, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2121-2131.
DOI |
[40] |
D. Xu, T. Wang, Z. Lu, Y. Wang, B. Sun, S. Wang, Q. Fu, Z. Bi, S. Geng, J. Mater. Sci. Technol. 90 (2021) 133-142.
DOI URL |
[41] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[42] |
S.J. Yuan, A.M.F. Choong, S.O. Pehkonen, Corros. Sci. 49 (2007) 4352-4385.
DOI URL |
[43] |
G.M. Teitzel, M.R. Parsek, Appl. Environ. Microbiol. 69 (2003) 2313-2320.
DOI URL |
[44] |
B.G. Pound, J. Biomed. Mater. Res. A 102 (2014) 1595-1604.
DOI PMID |
[45] | X. Gai, Y. Bai, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Acta Bio-mater. 106 (2020) 387-395. |
[46] |
M. Ask, J. Lausmaa, B. Kasemo, Appl. Surf. Sci. 35 (1989) 283-301.
DOI URL |
[47] |
R.N.S. Sodhi, A. Weninger, J.E. Davies, K. Sreenivas, J. Vac. Sci. Technol. A 9 (1991) 1329-1333.
DOI URL |
[48] |
I. Milošev, N. Kovačević, J. Kovač, A. Kokalj, Corros. Sci. 98 (2015) 107-118.
DOI URL |
[49] |
M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2010) 887-898.
DOI URL |
[50] |
M. Ottosson, M. Boman, P. Berastegui, Y. Andersson, M. Hahlin, M. Korvela, R. Berger, Corros. Sci. 122 (2017) 53-60.
DOI URL |
[51] |
N.K. Awad, E.A. Ashour, N.K. Allam, Appl. Surf. Sci. 346 (2015) 158-164.
DOI URL |
[52] | M. Belkhaouda, L. Bammou, A. Zarrouk, R. Salghi, E. Ebenso, H. Zarrok, B. Ham-mouti, L. Bazzi, I. Warad, Int. J. Electrochem. Sci. 8 (2013) 7425-7436. |
[53] |
C.M. Bhadra, V. Khanh Truong, V.T.H. Pham, M. Al Kobaisi, G. Seniutinas, J.Y. Wang, S. Juodkazis, R.J. Crawford, E.P. Ivanova, Sci. Rep. 5 (2015) 16817.
DOI PMID |
[54] |
J.R. Turnlund, W.R. Keyes, S.K. Kim, J.M. Domek, Am. J. Clin. Nutr. 81 (2005) 822-828.
PMID |
[55] |
M. Bost, S. Houdart, M. Oberli, E. Kalonji, J.F. Huneau, I. Margaritis, J. Trace Elem. Med. Biol. 35 (2016) 107-115.
DOI URL |
[56] |
G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46 (2004) 109-135.
DOI URL |
[57] |
W.R. Osório, A. Cremasco, P.N. Andrade, A. Garcia, R. Caram, Electrochim. Acta 55 (2010) 759-770.
DOI URL |
[58] |
T. Hanawa, K. Asami, K. Asaoka, J. Biomed. Mater. Res. 40 (1998) 530-538.
DOI URL |
[1] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[2] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
[3] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[4] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[5] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[6] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[7] | Cong Wu, Qinyang Zhao, Shixing Huang, Yongqing Zhao, Lei Lei, Junqiang Ren, Qiaoyan Sun, Lian Zhou. Deformation mechanisms in a β-quenched Ti-5321 alloy: In-situ investigation related to slip activity, orientation evolution and stress induced martensite [J]. J. Mater. Sci. Technol., 2022, 112(0): 36-48. |
[8] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[9] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[10] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[11] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
[12] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[13] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[14] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
[15] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||