J. Mater. Sci. Technol. ›› 2022, Vol. 109: 276-281.DOI: 10.1016/j.jmst.2021.08.085
• Research Article • Previous Articles Next Articles
Derek Haoa, Tianyi Mab, Baohua Jiab, Yunxia Weic, Xiaojuan Baid, Wei Weia, Bing-Jie Nia,*(
)
Received:2021-08-03
Revised:2021-08-24
Accepted:2021-08-25
Published:2022-05-20
Online:2021-11-09
Contact:
Bing-Jie Ni
About author:* E-mail address: bingjieni@gmail.com (B.-J. Ni).Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr[J]. J. Mater. Sci. Technol., 2022, 109: 276-281.
Fig. 1. (a) Schematic illustration of the preparation of BiOBr nanosheets and the self-assembly process with TCNQ. (b, c) The SEM images of BiOBr. (d) The SEM image of BiOBr-TCNQ-2. (e) The TEM image of BiOBr sphere. (f) The high-resolution TEM image of BiOBr-TCNQ-2 and the energy dispersive spectra for elemental mapping of Bi (g), Br (h), O (i), C (j) and N (k).
Fig. 2. (a) The XRD patterns of BiOBr and BiOBr-TCNQ samples in the range of 5 to 80 °. (b) The FTIR spectra of BiOBr and BiOBr-TCNQ between 2300 and 500 cm-1. The narrow XPS spectra of O1s (c) and Bi 4f (d). The EPR spectra of BiOBr (e) and BiOBr-TCNQ samples (f). Inserted image in Fig. 2(f): The proposed possible structure of BiOBi-TCNQ sample.
Fig. 3. (a) The ammonia concentration changes over time. (b) The NH3 yield by prepared samples. (c) The NMR spectra of 15NH4Cl standard solution and the final photoreduction production of 15N2 by BiOBi-TCNQ-2. (d) The NH3 yield of BiOBi-TCNQ-2 in cycle uses.
Fig. 4. (a) The UV-vis DRS spectra of BiOBr, TCNQ and BiOBr-TCNQ samples. (b) The photoluminescence spectra, (c) photocurrent response and (d) electrochemical impedance spectroscopy of BiOBr and BiOBr-TCNQ-2. (e) The mechanisms of the separation and transfer of photogenerated electron-hole pairs for the remarkable photocatalytic N2 fixation performance.
| [1] |
L. Lassaletta, G. Billen, B. Grizzetti, J. Anglade, J. Garnier, Environ. Res. Lett. 9 (2014) 105011.
DOI URL |
| [2] |
S. Giddey, S.P.S. Badwal, A. Kulkarni, Int. J. Hydrog. Energy 38 (2013) 14576-14594.
DOI URL |
| [3] |
J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1 (2008) 636-639.
DOI URL |
| [4] |
D. Hao, Z. Chen, M. Figiela, I. Stepniak, W. Wei, B.J. Ni, J. Mater. Sci. Technol. 77 (2021) 163-168.
DOI URL |
| [5] | G. Leigh, in: Haber-Bosch and Other Industrial processes, Catalysts for Nitrogen Fixation, Springer, 2004, pp. 33-54. |
| [6] |
W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658-5716.
DOI URL |
| [7] |
Q. Hao, C.W. Liu, G.H. Jia, Y. Wang, H. Arandiyan, W. Wei, B.J. Ni, Mater. Horiz. 7 (2020) 1014-1029.
DOI URL |
| [8] |
Y. Liu, B. Huang, X. Chen, Z. Tian, X. Zhang, P. Tsiakaras, P.K. Shen, Appl. Catal. B Environ. 271 (2020) 118919.
DOI URL |
| [9] | L. Liu, H. Huang, Z. Chen, H. Yu, K. Wang, J. Huang, H. Yu, Y. Zhang, Angew. Chem. In Edit. 133 (2021) 18451-18456. |
| [10] |
S. Wang, X. Han, Y. Zhang, N. Tian, T. Ma, H. Huang, Small Struct 2 (2021) 2000061.
DOI URL |
| [11] |
D. Hao, Q. Huang, W. Wei, X. Bai, B.J. Ni, J. Clean. Prod. 314 (2021) 128033.
DOI URL |
| [12] | M. Ma, Y. Liu, Y. Wei, D. Hao, W. Wei, B.J. Ni, A facile oxygen vacancy and bandgap control of Bi(OH)SO 4 ·H 2 O for achieving enhanced photocat-alytic remediation, Journal of Environmental ManagementVolume 294 (2021) 15113046. |
| [13] |
D. Hao, C. Liu, X. Xu, M. Kianinia, I. Aharonovich, X. Bai, X. Liu, Z. Chen, W. Wei, G. Jia, New J. Chem. 44 (2020) 20651-20658.
DOI URL |
| [14] |
H. Li, J. Shang, Z.H. Ai, L.Z. Zhang, J. Am. Chem. Soc. 137 (2015) 6393-6399.
DOI URL |
| [15] |
S.Z. Liu, S.B. Wang, Y. Jiang, Z.Q. Zhao, G.Y. Jiang, Z.Y. Sun, Chem. Eng. J. 373 (2019) 572-579.
DOI URL |
| [16] |
L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 10 (2020) 6870-6899.
DOI URL |
| [17] |
D. Hao, Y. Liu, S.Y. Gao, H. Arandiyan, X.J. Bai, Q. Kong, W. Wei, P.K. Shen, B.J. Ni, Mater. Today 46 (2021) 212-233.
DOI URL |
| [18] |
L. Shi, Y. Yin, S. Wang, X. Xu, H. Wu, J. Zhang, S. Wang, H. Sun, Appl. Catal. B Environ. 278 (2020) 119325.
DOI URL |
| [19] | H.Y.F. Sim, J.R.T. Chen, C.S.L. Koh, H.K. Lee, X. Han, G.C. Phan-Quang, J.Y. Pang, C.L. Lay, S. Pedireddy, I.Y. Phang, Angew. Chem. Int Edit. 132 (2020) 17145-17151. |
| [20] |
L.Q. Li, C. Tang, B.Q. Xia, H.Y. Jin, Y. Zheng, S.Z. Qiao, ACS Catal. 9 (2019) 2902-2908.
DOI URL |
| [21] |
J. Li, H. Li, G.M. Zhan, L.Z. Zhang, Acc. Chem. Res. 50 (2017) 112-121.
DOI URL |
| [22] |
Y. Wang, M. Shi, D. Bao, F. Meng, Q. Zhang, Y. Zhou, K. Liu, Y. Zhang, J. Wang, Z. Chen, D. Liu, Z. Jiang, M. Luo, L. Gu, Q. Zhang, X. Cao, Y. Yao, M. Shao, Y. Zhang, X. Zhang, J. Chen, J. Yan, Q. Jiang, Angew. Chem. Int. Ed. 58 (2019) 9464-9469.
DOI PMID |
| [23] |
X. Chen, X. Zhang, Y.H. Li, M.Y. Qi, J.Y. Li, Z.R. Tang, Z. Zhou, Y.J. Xu, Appl. Catal. B Environ. 281 (2021) 119516.
DOI URL |
| [24] |
M. Lan, N. Zheng, X. Dong, X. Ren, J. Wu, H. Ma, X. Zhang, Sustain. Energy Fuels 5 (2021) 2927-2933.
DOI URL |
| [25] |
X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu, Z. Jin, Nanoscale, 11 (2019) 10439-10445.
DOI URL |
| [26] | W.L. Huang, Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations, J. Comput. Chem.. 30 (2009) 1882-1891. |
| [27] |
X.Y. Kong, W.P.C. Lee, W.J. Ong, S.P. Chai, A.R. Mohamed, ChemCatChem 8 (2016) 3074-3081.
DOI URL |
| [28] |
S. Heidari, M. Haghighi, M. Shabani, J. Clean. Prod. 259 (2020) 120679.
DOI URL |
| [29] |
Z. Shi, Y. Zhang, X. Shen, G. Duoerkun, B. Zhu, L. Zhang, M. Li, Z. Chen, Chem. Eng. J. 386 (2020) 124010.
DOI URL |
| [30] |
H. Yu, J. Huang, L. Jiang, Y. Shi, K. Yi, W. Zhang, J. Zhang, H. Chen, X. Yuan, Chem. Eng. J. 402 (2020) 126187.
DOI URL |
| [31] |
X.L. Xue, R.P. Chen, H.W. Chen, Y. Hu, Q.Q. Ding, Z.T. Liu, L.B. Ma, G.Y. Zhu, W.J. Zhang, Q. Yu, J. Liu, J. Ma, Z. Jin, Nano Lett. 18 (2018) 7372-7377.
DOI URL |
| [32] |
J. Di, J. Xia, M.F. Chisholm, J. Zhong, C. Chen, X. Cao, F. Dong, Z. Chi, H. Chen, Y.X. Weng, J. Xiong, S.Z. Yang, H. Li, Z. Liu, S. Dai, Adv. Mater. 31 (2019) 1807576.
DOI URL |
| [33] |
R. Shi, Y. Zhao, G.I. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 9 (2019) 9739-9750.
DOI URL |
| [34] |
T.H. Bennett, R. Pamu, G. Yang, D. Mukherjee, B. Khomami, Nanoscale Adv. 2 (2020) 5171-5180.
DOI URL |
| [35] |
W. Ni, G.G. Gurzadyan, L. Ma, P. Hu, C. Kloc, L. Sun, J. Phys. Chem. C 124 (2020) 13894-13901.
DOI URL |
| [36] | W. Jiang, M. Zhang, J. Wang, Y. Liu, Y. Zhu, Appl. Catal. B Environ. 160 (2014) 44-50. |
| [37] |
P. Hu, L. Liu, W. An, Y. Liang, W. Cui, Appl. Surf. Sci. 425 (2017) 329-339.
DOI URL |
| [38] |
Z. Zhang, J. Wang, D. Liu, W. Luo, M. Zhang, W. Jiang, Y. Zhu, ACS Appl. Mater. Interfaces 8 (2016) 30225-30231.
DOI URL |
| [39] |
A. Hayat, N. Shaishta, S.K.B. Mane, J. Khan, A. Hayat, ACS Appl. Mater. Interfaces 11 (2019) 46756-46766.
DOI URL |
| [40] |
J. Xia, J. Di, H. Li, H. Xu, H. Li, S. Guo, Appl. Catal. B Environ. 181 (2016) 260-269.
DOI URL |
| [41] | G.R. Bhadu, J.C. Chaudhari, B. Rebary, R. Patidar, D.N. Srivastava, Micron 107 (2018) 85-93. |
| [42] |
G. Gupta, A. Kaur, A. Sinha, S.K. Kansal, Mater. Res. Bull. 88 (2017) 148-155.
DOI URL |
| [43] |
X. Tu, S. Luo, G. Chen, J. Li, Chem. Eur. J. 18 (2012) 14359-14366.
DOI URL |
| [44] |
Y. Yan, H. Yang, Z. Yi, X. Wang, R. Li, T. Xian, Environ. Eng. Sci. 37 (2020) 64-77.
DOI URL |
| [45] |
H. Yu, H. Huang, K. Xu, W. Hao, Y. Guo, S. Wang, X. Shen, S. Pan, Y. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 10499-10508.
DOI URL |
| [46] |
H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 482-492.
DOI URL |
| [1] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
| [2] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
| [3] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
| [4] | Tayiba Ilyas, Fazal Raziq, Nasir Ilyas, Liuxin Yang, Sharafat Ali, Amir Zada, Syedul Hasnain Bakhtiar, Yong Wang, Huahai Shen, Liang Qiao. FeNi@CNS nanocomposite as an efficient electrochemical catalyst for N2-to-NH3 conversion under ambient conditions [J]. J. Mater. Sci. Technol., 2022, 103(0): 59-66. |
| [5] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
| [6] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
| [7] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
| [8] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
| [9] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
| [10] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
| [11] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
| [12] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
| [13] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
| [14] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
| [15] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
