J. Mater. Sci. Technol. ›› 2021, Vol. 88: 132-142.DOI: 10.1016/j.jmst.2021.01.056
Previous Articles Next Articles
Fengying Zhanga, Panpan Gaoa, Hua Tanb,*(), Yao Lia, Yongnan Chena, Min Meia, Adam T. Clarec,*(
), Lai-Chang Zhangd
Received:
2020-10-12
Revised:
2021-01-10
Accepted:
2021-01-14
Published:
2021-03-17
Online:
2021-03-17
Contact:
Hua Tan,Adam T. Clare
About author:
Adam.Clare@nottingham.ac.uk(A.T. Clare).Fengying Zhang, Panpan Gao, Hua Tan, Yao Li, Yongnan Chen, Min Mei, Adam T. Clare, Lai-Chang Zhang. Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition[J]. J. Mater. Sci. Technol., 2021, 88: 132-142.
Fig. 1. SEM morphologies of different powders used for DED Ti-6Al-3Mo alloy: (a) Ti, (b) Al, (c) Mo, (d) directly mixed Ti +6 wt.% Al +3 wt.% Mo powder blends, (e) and (f) satellite Ti +6 wt.% Al +3 wt.% Mo powder blends.
Experiment | Laser power (W) | Scanning speed (mm s-1) | Spot diameter (mm) | Powder feeding rate (g min-1) | Carrier gas flow (L min-1) | Z axis increment (mm) | Powder used |
---|---|---|---|---|---|---|---|
E1 | 1800 | 10 | 4 | 6 | 7 | 0.3 | Directly mixed powder |
E2 | 1500 | 8 | 4 | 20 | 10 | 0.8 | Directly mixed powder |
E3 | 1500 | 8 | 4 | 20 | 10 | 0.8 | Satellite powder |
Table 1 DED process parameters used for Ti-6Al-3Mo alloy.
Experiment | Laser power (W) | Scanning speed (mm s-1) | Spot diameter (mm) | Powder feeding rate (g min-1) | Carrier gas flow (L min-1) | Z axis increment (mm) | Powder used |
---|---|---|---|---|---|---|---|
E1 | 1800 | 10 | 4 | 6 | 7 | 0.3 | Directly mixed powder |
E2 | 1500 | 8 | 4 | 20 | 10 | 0.8 | Directly mixed powder |
E3 | 1500 | 8 | 4 | 20 | 10 | 0.8 | Satellite powder |
Fig. 3. The microscopic solidification microstructure of the DED Ti-6Al-3Mo samples prepared by: (a-d) E1 experiment from directly mixed Ti +6 wt.% Al +3 wt.% Mo, (e-h) E2 experiment from directly mixed Ti +6 wt.% Al +3 wt.% Mo, and (i-l) E3 experiment from satellite Ti +6 wt.% Al +3 wt.% Mo.
Fig. 5. EBSD results for the E3 sample with equiaxed grains: (a) IPF map along the deposition direction for the α phase, (b) the misorientation distributions of α-phase in the scanning region, (c) IPF map along the deposition direction for the reconstructed β grains, and (d) the pole figures of the α-phase and β-phase.
Fig. 8. The calculated results of the position and the corresponding running speeds of the powder particle with the diameter range from 5-100 μm during the process of breaking through the gas/liquid interface of the melt pool: (a) 5 μm, (b) 20 μm, (c) 40 μm, (d) 60 μm, (e) 80 μm, and (f) 100 μm.
Fig. 9. EDS mapping results of unmelted Mo particle in the deposited sample from satellite Ti +6 wt.% Al +3 wt.% Mo powder in E3 experiment: (a) SEM, (b) Ti, (c) Al, and (d) Mo.
Fig. 10. Microstructure in the prior-β grains in different experiments: (a, b) columnar grains obtained from E1 experiment, (c, d) near-equiaxed grains obtained from E2 experiment, and (e, f) equiaxed grains obtained from E3 experiment.
Fig. 11. EBSD analysis of DED Ti-6Al-3Mo samples from E1, E2 and E3 experiments: (a-d) IPF map along the deposition direction, pole figures and the proportion of the α variants of E1 sample, (e-h) IPF map along the deposition direction, pole figures and the proportion of the α variants of E2 sample, and (i-l) IPF map along the deposition direction, pole figures and the proportion of the α variants of E3 sample.
Sample | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|
E1 | 982 | 840 | 9.2 |
E2 | 1120 | 1021 | 8.9 |
E3 | 1082 | 922 | 9.8 |
Table 2 Average tensile properties of DED Ti-6Al-3Mo alloy from E1, E2 and E3 experiments.
Sample | Tensile strength (MPa) | Yield strength (MPa) | Elongation (%) |
---|---|---|---|
E1 | 982 | 840 | 9.2 |
E2 | 1120 | 1021 | 8.9 |
E3 | 1082 | 922 | 9.8 |
[1] |
B. Chen, Y. Su, Z.H. Xie, C.W. Tan, J.C. Feng, Opt. Laser Technol. 123 (2020), 105916.
DOI URL |
[2] |
W.J. Oh, W.J. Lee, M.S. Kim, J.B. Jeon, D.S. Shim, Opt. Laser Technol. 117 (2019) 6-17.
DOI URL |
[3] |
N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
[4] |
L.C. Zhang, H. Attar, Adv. Eng. Mater. 18 (2016) 463-475.
DOI URL |
[5] |
H. Tan, M. Guo, A.T. Clare, X. L, J. Chen, W.D. Huang, J. Mater. Sci. Technol. 35 (2019) 2027-2037.
DOI |
[6] |
H. Deng, L. Chen, W. Qiu, Z. Zheng, Y. Tang, Z. Hu, X. Cui, J. Alloys Compd. 810 (2019), 151792.
DOI URL |
[7] |
Q. Zhang, J. Chen, L.L. Wang, H. Tan, X. Lin, W.D. Huang, J. Mater. Sci. Technol. 32 (2016) 381-386.
DOI URL |
[8] |
B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87 (2015) 309-320.
DOI URL |
[9] |
Y.Y. Zhu, X.J. Tian, J. Li, H.M. Wang, Mater. Des. 67 (2015) 538-542.
DOI URL |
[10] |
A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.K.S. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakrishna, A.A. Zadpoor, J. Alloys Compd. 804 (2019) 163-191.
DOI URL |
[11] |
Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, S.B. Tor, Mater. Des. 139 (2018) 565-586.
DOI URL |
[12] |
Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, W.D. Huang, Mater. Sci. Eng. A 673 (2016) 204-212.
DOI URL |
[13] | M. Kahlin, H. Ansell, D. Basu, A. Kerwin, L. Newton, B. Smith, J.J. Moverare, Int.J. Fatigue 134 (2020), 105497. |
[14] |
A. Sterling, N. Shamsaei, B. Torries, S.M. Thompson, Procedia Eng. 133 (2015) 576-589.
DOI URL |
[15] |
J.W. Pegues, S. Shao, N. Shamsaei, N. Sanaei, A. Fatemi, D.H. Warner, P. Li, N. Phan, Int. J. Fatigue 132 (2020), 105358.
DOI URL |
[16] |
R. Molaei, A. Fatemi, N. Sanaei, J. Pegues, N. Shamsaei, S. Shao, P. Li, D.H. Warner, N. Phan, Int. J. Fatigue 132 (2020), 105363.
DOI URL |
[17] |
D.Y. Zhang, D. Qiu, M.A. Gibson, Y.F. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[18] |
C.J. Todaro, M.A. Easton, D. Qiu, D.Y. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. Stjohn, M. Qian, Nat. Commun. 11 (2020) 1-9.
DOI URL |
[19] | J. Donoghue, J. Sidhu, A.D. Wescott, P. Prangnell in: TMS 2015 144th Annual Meeting & Exhibition, 2015, pp. 437-444. |
[20] |
T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, J. Alloys Compd. 632 (2015) 505-513.
DOI URL |
[21] |
Y.Y. Zhu, D. Liu, X.J. Tian, H.B. Tang, H.M. Wang, Mater. Des. 56 (2014) 445-453.
DOI URL |
[22] |
Z. Li, J. Li, Y.Y. Zhu, X.J. Tian, H.M. Wang, J. Alloys Compd. 661 (2016) 126-135.
DOI URL |
[23] |
C.M. Liu, X.J. Tian, H.B. Tang, H.M. Wang, J. Alloys Compd. 572 (2013) 17-24.
DOI URL |
[24] |
Y.Y. Zhu, H.B. Tang, Z. Li, C. Xu, B. He, J. Alloys Compd. 777 (2019) 712-716.
DOI URL |
[25] | S.A. Mantri, R. Banerjee, Addit. Manuf. 23 (2018) 86-98. |
[26] |
P.C. Collins, R. Banerjee, S. Banerjee, H.L. Fraser, Mater. Sci. Eng. A 352 (2003) 118-128.
DOI URL |
[27] |
F.Y. Zhang, M. Yang, A.T. Clare, X. Lin, H. Tan, Y.N. Chen, J. Alloys Compd. 727 (2017) 821-831.
DOI URL |
[28] |
Z.G. Jiao, C. Ma, J. Fu, X. Cheng, H.B. Tang, D. Liu, J.K. Zhang, J. Alloys Compd. 745 (2018) 592-598.
DOI URL |
[29] | A.T. Clare, A. Kennedy, US15022344 (2014). |
[30] |
H. Tan, T.T. Hu, F.Y. Zhang, Y. Qiu, A.T. Clare, Adv. Eng. Mater. 21 (2019), 1900152.
DOI URL |
[31] |
L. Germain, S.R. Dey, M. Humbert, N. Gey, J. Microsc. 227 (2007) 284-291.
DOI URL |
[32] |
L. Germain, N. Gey, M. Humbert, Ultramicroscopy 107 (2007) 1129-1135.
PMID |
[33] |
S.C. Wang, M. Aindow, M.J. Starink, Acta Mater. 51 (2003) 2485-2508.
DOI URL |
[34] |
K. Wang, R. Bao, D. Liu, C. Yan, Mater. Sci. Eng. A 746 (2019) 276-289.
DOI URL |
[35] |
F.Y. Zhang, K. Wang, H.Y. Zhao, Y. Qiu, G. Wang, J.H. Zhang, H. Tan, Opt. Laser Eng. 129 (2020), 106065.
DOI URL |
[36] |
M. Humbert, F. Wagner, C. Esling, J. Appl. Crystallogr. 25 (2014) 724-730.
DOI URL |
[1] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[2] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[3] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[4] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[5] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[6] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[7] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[8] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[9] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
[10] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[11] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[12] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[13] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[14] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[15] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||