J. Mater. Sci. Technol. ›› 2022, Vol. 111: 224-235.DOI: 10.1016/j.jmst.2021.09.019
• Research Article • Previous Articles Next Articles
Ł. Maja,*(), D. Wojtasa,b, A. Jarzębskaa, M. Biedaa, K. Trembecka-Wójcigaa, R. Chulista, W. Kozioła, A. Górala, A. Trelkaa, K. Janusa, J. Kawałkoc, M. Kulczykd, F. Muhaffele, H. Çimenoğlue, K. Sztwiertniaa
Received:
2021-05-14
Revised:
2021-09-21
Accepted:
2021-09-24
Published:
2021-10-07
Online:
2021-10-07
Contact:
Ł. Maj
About author:
* E-mail address: l.maj@imim.pl (Ł. Maj).Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method[J]. J. Mater. Sci. Technol., 2022, 111: 224-235.
Standard | Maximum concentration (wt.%) | |||||
---|---|---|---|---|---|---|
N | C | H | Fe | O | Ti | |
UNS R 50,700 | 0.050 | 0.080 | 0.015 | 0.500 | 0.400 | balance |
Table 1. Chemical composition of titanium grade 4 according to the standard.
Standard | Maximum concentration (wt.%) | |||||
---|---|---|---|---|---|---|
N | C | H | Fe | O | Ti | |
UNS R 50,700 | 0.050 | 0.080 | 0.015 | 0.500 | 0.400 | balance |
Parameter | Initial extrusion | Thermal treatment and turning | 1st pass of HE | 2nd pass of HE | 3rd pass of HE | RS |
---|---|---|---|---|---|---|
Reduction in diameter [mm] | 50 → 30 | Annealing at 700 °C for 2 h and turning 30 → 20 | 20 → 12 | 12 → 8 | 8 → 6 | 6 → 5 |
Cumulative true strain ε | 0.5 | - | 1 | 1.4 | 1.7 | 1.9 |
Table 2. Subsequent steps of treatment of substrate material.
Parameter | Initial extrusion | Thermal treatment and turning | 1st pass of HE | 2nd pass of HE | 3rd pass of HE | RS |
---|---|---|---|---|---|---|
Reduction in diameter [mm] | 50 → 30 | Annealing at 700 °C for 2 h and turning 30 → 20 | 20 → 12 | 12 → 8 | 8 → 6 | 6 → 5 |
Cumulative true strain ε | 0.5 | - | 1 | 1.4 | 1.7 | 1.9 |
Fig. 1. Scheme of MAO coating on the top of titanium grade 4 after hydrostatic extrusion and SEM/SE images presenting the base and walls of coated cylinder.
Fig. 2. SEM/EBSD orientation maps of substrate material of titanium grade 4 after 3-pass hydrostatic extrusion and RS in (a) TCS and (b) LCS with marked HAGBs (black lines) as well as (c) calculations of HAGB, LAGB density and average grain size. Color-coding based on inverse pole figure with respect to the ED according to the shown standard triangle. Black areas correspond to the points with the CI lower than 0.1 and were excluded from analysis.
Fig. 4. .(0002),($10\bar{1}0$) and ($11\bar{2}0$) pole figures of titanium grade 4 subjected to 3-pass hydrostatic extrusion and RS calculated based on EBSD data (A1-A2 denotes the TCS plane).
Fig. 5. XRD pattern of the MAO-produced coatings: the top spectrum was acquired from side wall of the coated rod, while the bottom one was obtained - from its top surface.
Fig. 6. SEM/SE images of the surface topography of the MAO coating produced on (a) top surface and (b) side wall of titanium grade 4 after 3-pass hydrostatic extrusion and RS.
Fig. 7. AFM maps of the surface topography of the MAO coating produced on (a) top surface and (b) side wall of titanium grade 4 after 3-pass hydrostatic extrusion and RS.
Fig. 8. SEM/BSE microstructure images of the MAO coating produced on titanium grade 4 after 3-pass hydrostatic extrusion and RS presented in the (a, c) transversal and (b, d) longitudinal section to ED.
Fig. 9. TEM/BF microstructure images of MAO coating produced on the top surface of titanium grade 4 subjected to 3-pass hydrostatic extrusion and RS: (a) general overview, (b) interface and (c) coating area.
Fig. 10. TEM/BF microstructure images of MAO coating produced on the sidewall of titanium grade 4 subjected to 3-pass hydrostatic extrusion and RS: (a) general overview, (b) interface and (c) coating area.
Fig. 11. TEM/BF microstructure image of MAO coating produced on titanium grade 4 subjected to the 3-pass hydrostatic extrusion and RS (a) and SAED diffraction patterns from (b) interface area, (c) ultrafine grain and (d) amorphous matrix.
Fig. 12. SEM/BSE microstructure image of the MAO coating produced on titanium grade 4 after the 3-pass hydrostatic extrusion and RS and the EDS maps of distribution of chemical elements.
[1] |
Y. Wang, H. Yu, C. Chen, Z. Zhao, Mater. Des. 85 (2015) 640-652.
DOI URL |
[2] |
L. Zhang, L. Chen, L. Wang, Adv. Eng. Mater. 22 (2020) 1901258.
DOI URL |
[3] |
T. Clyne, S. Troughton, Int. Mater. Rev. 64 (3) (2019) 127-162.
DOI URL |
[4] |
F. Muhaffel, H. Cimenoglu, Surf. Coat. Technol. 357 (2019) 822-832.
DOI URL |
[5] |
A. Castellanos, A. Altube, J. Vega, E. Garcia-Lecina, J. Diez, H. Grande, Surf. Coat. Technol. 278 (2015) 99-107.
DOI URL |
[6] |
K. Rokosz, T. Hryniewicz, L. Dudek, Materials 13 (11) (2020) 2468.
DOI URL |
[7] | M. Mohedano, X. Lu, E. Matykina, C. Blawert, R. Arrabal, M. Zheludkevich, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 423-438, Elsevier, 2018. |
[8] |
J. Karbowniczek, F. Muhaffel, G. Cempura, H. Cimenoglu, A. Czyrska-File- monowicz, Surf. Coat. Technol. 321 (2017) 97-107.
DOI URL |
[9] |
R. Hussein, X. Nie, D. Northwood, Electrochim. Acta 112 (2013) 111-119.
DOI URL |
[10] |
Q. Chabuk, J. Al-Murshdy, N. Dawood, J. Physics: Conf. Ser. 1973 (2021) 012114.
DOI URL |
[11] |
A. Pogrebnyak, A. Kaverina, M. Kylyshkanov, Prot. Met. Phys. Chem. Surf. 50 (1) (2014) 72-87.
DOI URL |
[12] | A. Alsaran, G. Purcek, I. Hacisalihoglu, Y. Vangolu, Ö. Bayrak, I. Karaman, A. Ce- lik, Surf. Coat. Technol. 205 (2011) 537-542. |
[13] |
E. Parfenov, L. Parfenova, G. Dyakonov, K. Danilko, V. Mukaeva, R. Farrakhov, E. Lukina, R. Valiev, Surf. Coat. Technol. 357 (2019) 669-683.
DOI URL |
[14] |
L. Xu, C. Wu, X. Lei, K. Zhang, C. Liu, J. Ding, X. Shi, Surf. Coat. Technol. 342 (2018) 12-22.
DOI URL |
[15] |
Z. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J. Jiang, R. Valiev, M. Qi, H.J. Fecht, Acta Biomater. 6 (2010) 2816-2825.
DOI PMID |
[16] |
Y. Gu, L. Chen, W. Yue, P. Chen, F. Chen, C. Ning, J. Alloy. Compd. 664 (2016) 770-776.
DOI URL |
[17] |
S. Fatimah, H. Yang, M. Kamil, Y. Ko, Appl. Surf. Sci. 477 (2019) 60-70.
DOI |
[18] |
R. Valiev, E. Prokofiev, N. Kazarinov, G. Raab, T. Minasov, J. Strásky, Materials 13 (2020) 967.
DOI URL |
[19] |
M. Abbasi, F. Ahmadi, M. Farzin, Met. Mater. Int. 27 (2021) 705-716.
DOI URL |
[20] | A. Polyakov, I. Semenova, G. Raab, V. Sitdikov, R. Valiev, Rev. Adv. Mater. Sci. 31 (2012) 78-84. |
[21] |
J. Kawałko, M. Wroński, M. Bieda, K. Sztwiertnia, K. Wierzbanowski, D. Wojtas, M. Łagoda, P. Ostachowski, W. Pachla, P. Kulczyk, Mater. Charact. 141 (2018) 19-31.
DOI URL |
[22] |
J. Kawałko, M. Bieda, K. Sztwiertnia, Arch. Metall. Mater. 61 (1) (2016) 31-36.
DOI URL |
[23] |
E. Moreno-Valle, W. Pachla, M. Kulczyk, I. Sabirov, A. Hohenwarter, Mater. Trans. 60 (2019) 2160-2167.
DOI |
[24] |
A. Chojnacka, J. Kawalko, H. Koscielny, J. Guspiel, A. Drewienkiewicz, M. Bieda, W. Pachla, M. Kulczyk, K. Sztwiertnia, E. Beltowska-Lehman, Appl. Surf. Sci. 426 (2017) 987-994.
DOI URL |
[25] |
D. Wojtas, A. Mzyk, J. Kawałko, G. Imbir, K. Trembecka-Wójciga, M. Marzec, A. Jarzębska, Ł. Maj, K. Wierzbanowski, R. Chulist, W. Pachla, K. Sztwiertnia, ACS Biomater. Sci. Eng. 7 (2021) 114-121.
DOI URL |
[26] |
D. Kubacka, A. Yamamoto, P. Wieci ′nski, H Garbacz, Appl. Surf. Sci. 472 (2019) 54-63.
DOI |
[27] | C. Nelson Elias, D. Jogaib Fernandes, C. Resende, J. Roestel, Dent. Mater. 31 (2015) 1-13. |
[28] |
D. Wojtas, K. Wierzbanowski, R. Chulist, W. Pachla, M. Bieda-Niemiec, A. Jarzebska, L. Maj, J. Kawałko, M. Marciszko-Wiackowska, M. Wronski, K.K. Sztwiertnia, J. Alloy. Compd. 837 (2020) 155576.
DOI URL |
[29] |
A. Michalcová, D. Vojtěch, J. Vavřĺk, K. Bartha, P. Beran, J. Drahokoupil, J. Džu- gan, J. Palán, J. ˇCížek, P. Lej ˇcek, Materials 13 (2020) 1116.
DOI URL |
[30] | H. Garbacz, I. Semenova, S. Zherebtsov, M. Motyka, Nanocrystalline Titanium, Elsevier, 2018. |
[31] |
F. Reshadi, G. Faraji, M. Baniassadi, M. Tajeddini, Surf. Coat. Technol. 316 (2017) 113-121.
DOI URL |
[32] |
D. Lazarev, R. Farrakhov, V. Mukaeva, O. Kulyasova, E. Parfenov, A. Yerokhin, Surf. Eng. Appl. Electrochem. 56 (1) (2020) 83-92.
DOI URL |
[33] | E. Matykina, F. Monfort, A. Berkani, P. Skeldon, G. Thompson, J. Gough, J. Elec- trochem. Soc. 154 (6) (2007) 279-285. |
[34] |
I. Celik, A. Alsaran, G. Purcek, Surf. Coat. Technol. 258 (2014) 842-848.
DOI URL |
[1] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[2] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[3] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[4] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[5] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[6] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[7] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[8] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[9] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[10] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[11] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[12] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[13] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[14] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[15] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||